, Volume 40, Issue 1, pp 123–135 | Cite as

Genetic Phagocyte NADPH Oxidase Deficiency Enhances Nonviable Candida albicans–Induced Inflammation in Mouse Lungs

  • Daiki Endo
  • Kenta Fujimoto
  • Rika Hirose
  • Hiroko Yamanaka
  • Mizuki Homme
  • Ken-ichi Ishibashi
  • Noriko Miura
  • Naohito Ohno
  • Yasuaki ArataniEmail author


Patients with chronic granulomatous disease (CGD) have mutated phagocyte NADPH oxidase, resulting in reduced production of reactive oxygen species (ROS). While the mechanism underlying hyperinfection in CGD is well understood, the basis for inflammatory disorders that arise in the absence of evident infection has not been fully explained. This study aimed to evaluate the effect of phagocyte NADPH oxidase deficiency on lung inflammation induced by nonviable Candida albicans (nCA). Mice deficient in this enzyme (CGD mice) showed more severe neutrophilic pneumonia than nCA-treated wild-type mice, which exhibited significantly higher lung concentrations of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and keratinocyte-derived chemokine (KC). Neutralization of these proinflammatory mediators significantly reduced neutrophil infiltration. In vitro, production of IL-1β and TNF-α from neutrophils and that of KC from macrophages was enhanced in nCA-stimulated neutrophils from CGD mice. Expression of IL-1β mRNA was higher in the stimulated CGD neutrophils than in the stimulated wild-type cells, concomitant with upregulation of nuclear factor (NF)-κB and its upstream regulator extracellular-signal regulated kinase (ERK) 1/2. Pretreatment with an NADPH oxidase inhibitor significantly enhanced IL-1β production in the wild-type neutrophils stimulated with nCA. These results suggest that lack of ROS production because of NADPH oxidase deficiency results in the production of higher levels of proinflammatory mediators from neutrophils and macrophages, which may at least partly contribute to the exacerbation of nCA-induced lung inflammation in CGD mice.


inflammation phagocyte NADPH oxidase neutrophil Candida 



We thank Dr. Mary C. Dinauer, Indiana University School of Medicine, for kindly providing the CGD mice. We thank Yuri Nakao, Minami Sugimura, and Saori Takatori for technical support. This work was supported in part by JSPS KAKENHI grant number 26450446.


Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Winterbourn, C.C., A.J. Kettle, and M.B. Hampton. 2016. Reactive oxygen species and neutrophil function. Annual Review of Biochemistry 85: 765–792.CrossRefPubMedGoogle Scholar
  2. 2.
    Babior, B.M. 1999. NADPH oxidase: an update. Blood 93(5): 1464–1476.PubMedGoogle Scholar
  3. 3.
    Nunes, P., N. Demaurex, and M.C. Dinauer. 2013. Regulation of the NADPH oxidase and associated ion fluxes during phagocytosis. Traffic 14(11): 1118–1131.PubMedGoogle Scholar
  4. 4.
    Klebanoff, S.J., A.J. Kettle, H. Rosen, C.C. Winterbourn, and W.M. Nauseef. 2013. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. Journal of Leukocyte Biology 93(2): 185–198.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Marciano, B.E., C. Spalding, A. Fitzgerald, D. Mann, T. Brown, S. Osgood, L. Yockey, D.N. Darnell, L. Barnhart, J. Daub, L. Boris, A.P. Rump, V.L. Anderson, C. Haney, D.B. Kuhns, S.D. Rosenzweig, C. Kelly, A. Zelazny, T. Mason, S.S. DeRavin, E. Kang, J.I. Gallin, H.L. Malech, K.N. Olivier, G. Uzel, A.F. Freeman, T. Heller, C.S. Zerbe, and S.M. Holland. 2014. Common severe infections in chronic granulomatous disease. Clinical Infectious Diseases 60(8): 1176–1183.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Roos, D., and M. de Boer. 2013. Molecular diagnosis of chronic granulomatous disease. Clinical and Experimental Immunology 175(2): 139–149.CrossRefGoogle Scholar
  7. 7.
    Winkelstein, J.A., M.C. Marino, R.B. Johnston Jr., J. Boyle, J. Curnutte, J.I. Gallin, H.L. Malech, S.M. Holland, H. Ochs, P. Quie, R.H. Buckley, C.B. Foster, S.J. Chanock, and H. Dickler. 2000. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79(3): 155–169.CrossRefGoogle Scholar
  8. 8.
    Song, E., G.B. Jaishankar, H. Saleh, W. Jithpratuck, R. Sahni, and G. Krishnaswamy. 2011. Chronic granulomatous disease: a review of the infectious and inflammatory complications. Clinical and Molecular Allergy 9(1): 10.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    van den Berg, J.M., E. van Koppen, A. Ahlin, B.H. Belohradsky, E. Bernatowska, L. Corbeel, T. Espanol, A. Fischer, M. Kurenko-Deptuch, R. Mouy, T. Petropoulou, J. Roesler, R. Seger, M.J. Stasia, N.H. Valerius, R.S. Weening, B. Wolach, D. Roos, and T.W. Kuijpers. 2009. Chronic granulomatous disease: the European experience. PLoS One 4(4): e5234.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Morgenstern, D.E., M.A. Gifford, L.L. Li, C.M. Doerschuk, and M.C. Dinauer. 1997. Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. The Journal of Experimental Medicine 185(2): 207–218.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pollock, J.D., D.A. Williams, M.A. Gifford, L.L. Li, X. Du, J. Fisherman, S.H. Orkin, C.M. Doerschuk, and M.C. Dinauer. 1995. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nature Genetics 9(2): 202–209.CrossRefPubMedGoogle Scholar
  12. 12.
    Aratani, Y., F. Kura, H. Watanabe, H. Akagawa, Y. Takano, K. Suzuki, M.C. Dinauer, N. Maeda, and H. Koyama. 2002. Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Medical Mycology 40(6): 557–563.CrossRefPubMedGoogle Scholar
  13. 13.
    Aratani, Y., F. Kura, H. Watanabe, H. Akagawa, Y. Takano, K. Suzuki, M.C. Dinauer, N. Maeda, and H. Koyama. 2002. Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. The Journal of Infectious Diseases 185(12): 1833–1837.CrossRefPubMedGoogle Scholar
  14. 14.
    Levine, S., V.V. Smith, M. Malone, and N.J. Sebire. 2005. Histopathological features of chronic granulomatous disease (CGD) in childhood. Histopathology 47(5): 508–516.CrossRefPubMedGoogle Scholar
  15. 15.
    Schappi, M.G., V. Jaquet, D.C. Belli, and K.H. Krause. 2008. Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Seminars in Immunopathology 30(3): 255–271.CrossRefPubMedGoogle Scholar
  16. 16.
    Segal, B.H., M.J. Grimm, A.N. Khan, W. Han, and T.S. Blackwell. 2012. Regulation of innate immunity by NADPH oxidase. Free Radical Biology and Medicine 53(1): 72–80.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Harris, B.H., and E.T. Boles Jr. 1973. Intestinal lesions in chronic granulomatous disease of childhood. Journal of Pediatric Surgery 8(6): 955–956.CrossRefPubMedGoogle Scholar
  18. 18.
    Chin, T.W., E.R. Stiehm, J. Falloon, and J.I. Gallin. 1987. Corticosteroids in treatment of obstructive lesions of chronic granulomatous disease. Journal of Pediatrics 111(3): 349–352.CrossRefPubMedGoogle Scholar
  19. 19.
    Segal, B.H., W. Han, J.J. Bushey, M. Joo, Z. Bhatti, J. Feminella, C.G. Dennis, R.R. Vethanayagam, F.E. Yull, M. Capitano, P.K. Wallace, H. Minderman, J.W. Christman, M.B. Sporn, J. Chan, D.C. Vinh, S.M. Holland, L.R. Romani, S.L. Gaffen, M.L. Freeman, and T.S. Blackwell. 2010. NADPH oxidase limits innate immune responses in the lungs in mice. PLoS One 5(3): e9631.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Whitmore, L.C., K.L. Goss, E.A. Newell, B.M. Hilkin, J.S. Hook, and J.G. Moreland. 2014. NOX2 protects against progressive lung injury and multiple organ dysfunction syndrome. American Journal of Physiology. Lung Cellular and Molecular Physiology 307(1): L71–L82.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang, W.J., H. Wei, and B. Frei. 2009. Genetic deficiency of NADPH oxidase does not diminish, but rather enhances, LPS-induced acute inflammatory responses in vivo. Free Radical Biology and Medicine 46(6): 791–798.CrossRefPubMedGoogle Scholar
  22. 22.
    Petersen, J.E., T.S. Hiran, W.S. Goebel, C. Johnson, R.C. Murphy, F.H. Azmi, A.F. Hood, J.B. Travers, and M.C. Dinauer. 2002. Enhanced cutaneous inflammatory reactions to Aspergillus fumigatus in a murine model of chronic granulomatous disease. Journal of Investigative Dermatology 118(3): 424–429.CrossRefPubMedGoogle Scholar
  23. 23.
    Shepherd, M.G., and P.A. Sullivan. 1976. The production and growth characteristics of yeast and mycelial forms of Candida albicans in continuous culture. Journal of General Microbiology 93(2): 361–370.CrossRefPubMedGoogle Scholar
  24. 24.
    Hida, S., N.N. Miura, Y. Adachi, and N. Ohno. 2005. Effect of Candida albicans cell wall glucan as adjuvant for induction of autoimmune arthritis in mice. Journal of Autoimmunity 25(2): 93–101.CrossRefPubMedGoogle Scholar
  25. 25.
    Homme, M., N. Tateno, N. Miura, N. Ohno, and Y. Aratani. 2013. Myeloperoxidase deficiency in mice exacerbates lung inflammation induced by nonviable Candida albicans. Inflammation Research 62(11): 981–990.CrossRefPubMedGoogle Scholar
  26. 26.
    Fleming, T.J., M.L. Fleming, and T.R. Malek. 1993. Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. The Journal of Immunology 151(5): 2399–2408.PubMedGoogle Scholar
  27. 27.
    Hazuda, D.J., J. Strickler, F. Kueppers, P.L. Simon, and P.R. Young. 1990. Processing of precursor interleukin 1 beta and inflammatory disease. The Journal of Biological Chemistry 265(11): 6318–6322.PubMedGoogle Scholar
  28. 28.
    Franchi, L., T. Eigenbrod, R. Munoz-Planillo, and G. Nunez. 2009. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature Immunology 10(3): 241–247.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Grimm, M.J., R.R. Vethanayagam, N.G. Almyroudis, C.G. Dennis, A.N. Khan, A.C. D’Auria, K.L. Singel, B.A. Davidson, P.R. Knight, T.S. Blackwell, T.M. Hohl, M.K. Mansour, J.M. Vyas, M. Rohm, C.F. Urban, T. Kelkka, R. Holmdahl, and B.H. Segal. 2013. Monocyte- and macrophage-targeted NADPH oxidase mediates antifungal host defense and regulation of acute inflammation in mice. The Journal of Immunology 190(8): 4175–4184.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay. 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine & Growth Factor Reviews 14(6): 523–535.CrossRefGoogle Scholar
  31. 31.
    Dinarello, C.A. 2009. Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology 27: 519–550.CrossRefPubMedGoogle Scholar
  32. 32.
    Pahl, H.L. 1999. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49): 6853–6866.CrossRefPubMedGoogle Scholar
  33. 33.
    Lord, P.C., L.M. Wilmoth, S.B. Mizel, and C.E. McCall. 1991. Expression of interleukin-1 alpha and beta genes by human blood polymorphonuclear leukocytes. Journal of Clinical Investigation 87(4): 1312–1321.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Marucha, P.T., R.A. Zeff, and D.L. Kreutzer. 1990. Cytokine regulation of IL-1 beta gene expression in the human polymorphonuclear leukocyte. The Journal of Immunology 145(9): 2932–2937.PubMedGoogle Scholar
  35. 35.
    McDonald, P.P., A. Bald, and M.A. Cassatella. 1997. Activation of the NF-kappaB pathway by inflammatory stimuli in human neutrophils. Blood 89(9): 3421–3433.PubMedGoogle Scholar
  36. 36.
    Chen, B.C., Y.S. Chang, J.C. Kang, M.J. Hsu, J.R. Sheu, T.L. Chen, C.M. Teng, and C.H. Lin. 2004. Peptidoglycan induces nuclear factor-kappaB activation and cyclooxygenase-2 expression via Ras, Raf-1, and ERK in RAW 264.7 macrophages. The Journal of Biological Chemistry 279(20): 20889–20897.CrossRefPubMedGoogle Scholar
  37. 37.
    Guha, M., M.A. O’Connell, R. Pawlinski, A. Hollis, P. McGovern, S.F. Yan, D. Stern, and N. Mackman. 2001. Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98(5): 1429–1439.CrossRefPubMedGoogle Scholar
  38. 38.
    Saccani, S., S. Pantano, and G. Natoli. 2002. p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nature Immunology 3(1): 69–75.CrossRefPubMedGoogle Scholar
  39. 39.
    Murphy, L.O., and J. Blenis. 2006. MAPK signal specificity: the right place at the right time. Trends in Biochemical Sciences 31(5): 268–275.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhou, J.Y., Y. Liu, and G.S. Wu. 2006. The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Research 66(9): 4888–4894.CrossRefPubMedGoogle Scholar
  41. 41.
    Gross, O., H. Poeck, M. Bscheider, C. Dostert, N. Hannesschlager, S. Endres, G. Hartmann, A. Tardivel, E. Schweighoffer, V. Tybulewicz, A. Mocsai, J. Tschopp, and J. Ruland. 2009. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459(7245): 433–436.CrossRefPubMedGoogle Scholar
  42. 42.
    van de Veerdonk, F.L., L.A. Joosten, P.J. Shaw, S.P. Smeekens, R.K. Malireddi, J.W. van der Meer, B.J. Kullberg, M.G. Netea, and T.D. Kanneganti. 2011. The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis. European Journal of Immunology 41(8): 2260–2268.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Guarda, G., M. Braun, F. Staehli, A. Tardivel, C. Mattmann, I. Forster, M. Farlik, T. Decker, R.A. Du Pasquier, P. Romero, and J. Tschopp. 2011. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34(2): 213–223.CrossRefPubMedGoogle Scholar
  44. 44.
    Hise, A.G., J. Tomalka, S. Ganesan, K. Patel, B.A. Hall, G.D. Brown, and K.A. Fitzgerald. 2009. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host & Microbe 5(5): 487–497.CrossRefGoogle Scholar
  45. 45.
    van de Veerdonk, F.L., L.A. Joosten, I. Devesa, H.M. Mora-Montes, T.D. Kanneganti, C.A. Dinarello, J.W. van der Meer, N.A. Gow, B.J. Kullberg, and M.G. Netea. 2009. Bypassing pathogen-induced inflammasome activation for the regulation of interleukin-1beta production by the fungal pathogen Candida albicans. The Journal of Infectious Diseases 199(7): 1087–1096.CrossRefPubMedGoogle Scholar
  46. 46.
    van de Veerdonk, F.L., S.P. Smeekens, L.A. Joosten, B.J. Kullberg, C.A. Dinarello, J.W. van der Meer, and M.G. Netea. 2010. Reactive oxygen species-independent activation of the IL-1beta inflammasome in cells from patients with chronic granulomatous disease. Proceedings of the National Academy of Sciences of the United States of America 107(7): 3030–3033.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Rubartelli, A., F. Cozzolino, M. Talio, and R. Sitia. 1990. A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence. The EMBO Journal 9(5): 1503–1510.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Shi, J., Y. Zhao, K. Wang, X. Shi, Y. Wang, H. Huang, Y. Zhuang, T. Cai, F. Wang, and F. Shao. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575): 660–665.CrossRefPubMedGoogle Scholar
  49. 49.
    Kayagaki, N., I.B. Stowe, B.L. Lee, K. O’Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q.T. Phung, P.S. Liu, J.R. Lill, H. Li, J. Wu, S. Kummerfeld, J. Zhang, W.P. Lee, S.J. Snipas, G.S. Salvesen, L.X. Morris, L. Fitzgerald, Y. Zhang, E.M. Bertram, C.C. Goodnow, and V.M. Dixit. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526(7575): 666–671.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan
  2. 2.International College of Arts and SciencesYokohama City UniversityYokohamaJapan
  3. 3.Laboratory for Immunopharmacology of Microbial Products, School of PharmacyTokyo University of Pharmacy & Life SciencesTokyoJapan

Personalised recommendations