, Volume 40, Issue 1, pp 1–12 | Cite as

Indirubin Inhibits LPS-Induced Inflammation via TLR4 Abrogation Mediated by the NF-kB and MAPK Signaling Pathways

  • Jin-lun Lai
  • Yu-hui Liu
  • Chang Liu
  • Ming-pu Qi
  • Rui-ning Liu
  • Xi-fang Zhu
  • Qiu-ge Zhou
  • Ying-yu Chen
  • Ai-zhen GuoEmail author
  • Chang-min HuEmail author


Indirubin plays an important role in the treatment of many chronic diseases and exhibits strong anti-inflammatory activity. However, the molecular mode of action during mastitis prophylaxis remains poorly understood. In this study, a lipopolysaccharide (LPS)-induced mastitis mouse model showed that indirubin attenuated histopathological changes in the mammary gland, local tissue necrosis, and neutrophil infiltration. Moreover, indirubin significantly downregulated the production of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). We explored the mechanism whereby indirubin exerts protective effects against LPS-induced inflammation of mouse mammary epithelial cells (MMECs). The addition of different concentrations of indirubin before exposure of cells to LPS for 1 h significantly attenuated inflammation and reduced the concentrations of the three inflammatory cytokines in a dose-dependent manner. Indirubin downregulated LPS-induced cyclooxygenase-2 (COX-2) and Toll-like receptor 4 (TLR4) expression, inhibited phosphorylation of the LPS-induced nuclear transcription factor-kappa B (NF-kB) P65 protein and its inhibitor IkBα of the NF-kB signaling pathway. Furthermore, indirubin suppressed phosphorylation of P38, extracellular signal-regulated kinase (ERK), and c-Jun NH2-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) signal pathways. Thus, indirubin effectively suppressed LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways and may be useful for mastitis prophylaxis.


indirubin lipopolysaccharide (LPS) TLR4 NF-kB MAPK inflammation 



This project was supported by the Special Fund for China Agriculture Research System (Beef/Yak Cattle) (grant no. CARS-38); the Natural Science Foundation of Hubei Province, China (grant no. 2015CFB435); the National Natural Science Foundation of China (grant no. 31101874); and the Fundamental Research Funds for the Central Universities (grant nos. 2662015PY054 and 2662016PY015).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10753_2016_447_MOESM1_ESM.doc (108 kb)
ESM 1 (DOC 107 kb)


  1. 1.
    Hu, C., R. Gong, A. Guo, and H. Chen. 2010. Protective effect of ligand-binding domain of fibronectin-binding protein on mastitis induced by Staphylococcus aureus in mice. Vaccine 28: 4038–4044.CrossRefPubMedGoogle Scholar
  2. 2.
    De Vliegher, S., L.K. Fox, S. Piepers, S. McDougall, and H.W. Barkema. 2012. Invited review: mastitis in dairy heifers: nature of the disease, potential impact, prevention and control. Journal of Dairy Science 95: 1025–1040.CrossRefPubMedGoogle Scholar
  3. 3.
    Calvinho, L.F., and L. Tirante. 2005. Prevalencia de microorganismos patógenos de mastitis bovinay evolución del estado de salud de la glándula mamaria en Argentina en losúltimos 25 años. Revista FAVE 4: 29–40.Google Scholar
  4. 4.
    Watts, J.L. 1988. Etiological agents of bovine mastitis. Veterinary Microbiology 16: 41–66.CrossRefPubMedGoogle Scholar
  5. 5.
    Wellenberg, G.J., W.H. Vander Poel, and J.T. Van Oirschot. 2002. Viral infections and bovine mastitis: a review. Veterinary Microbiology 88: 27–45.CrossRefPubMedGoogle Scholar
  6. 6.
    Guo, M., Y. Cao, T. Wang, X. Song, Z. Liu, E. Zhou, X. Deng, N. Zhang, and Z. Yang. 2014. Baicalin inhibits Staphylococcus aureus-induced apoptosis by regulating TLR2 and TLR2-related apoptotic factors in the mouse mammary glands. European Journal of Pharmacology 723: 481–488.CrossRefPubMedGoogle Scholar
  7. 7.
    Burvenich, C., V. Van Merris, J. Mehrzad, A. Diez-Fraile, and L. Duchteau. 2003. Severity of E. coli mastitis is mainly determined by cow factors. Veterinary Research 34: 521–564.CrossRefPubMedGoogle Scholar
  8. 8.
    Vangroenweghe, F., P. Rainard, M. Paape, L. Duchateau, and C. Burvenich. 2004. Increase of Escherichia coli inoculum doses induces faster innate immune response in primiparous cows. Journal of Dairy Science 87: 4132–4144.CrossRefPubMedGoogle Scholar
  9. 9.
    Yang, Z., E. Zhou, D. Wei, D. Li, Z. Wei, W. Zhang, and X. Zhang. 2014. Emodin inhibits LPS-induced inflammatory response by activating PPAR-γ in mouse mammary epithelial cells. International Immunopharmacology 21: 354–360.CrossRefPubMedGoogle Scholar
  10. 10.
    Reuven, E.M., A. Fink, and Y. Shai. 2014. Regulation of innate immune responses by transmembrane interactions: lessons from the TLR family. Biochimica et Biophysica Acta 1838: 1586–1593.CrossRefPubMedGoogle Scholar
  11. 11.
    Ariyadi, B., N. Isobe, and Y. Yoshimura. 2014. Toll-like receptor signaling for the induction of mucin expression by lipopolysaccharide in the hen vagina. Poultry Science 93: 673–679.CrossRefPubMedGoogle Scholar
  12. 12.
    Kyriakis, John M., and Joseph Avruch. 2001. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews 81: 807–869.PubMedGoogle Scholar
  13. 13.
    Lee, J.C., S. Kassis, S. Kumar, A. Badger, and J.L. Adams. 1999. p38 mitogen-activated protein kinase inhibitors—mechanisms and therapeutic potentials. Pharmacology and Therapeutics 82: 389–397.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang, W., D.J. Liang, X.J. Song, T. Wang, Y. Cao, Z. Yang, and N. Zhang. 2015. Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. Inflammation 38: 16–26.CrossRefGoogle Scholar
  15. 15.
    Kunikata, T., T. Tatefuji, H. Aga, K. Iwaki, M. Ikeda, and M. Kurimoto. 2000. Indirubin inhibits inflammatory reactions in delayed-type hypersensitivity. European Journal of Pharmacology 410: 93–100.CrossRefPubMedGoogle Scholar
  16. 16.
    Ma, M.Z., and B.Y. Yao. 1983. Progress in indirubin treatment of chronic myelocytic leukemia. Journal of Traditional Chinese Medicine 3: 245–248.PubMedGoogle Scholar
  17. 17.
    Blažević, T., E.H. Heiss, A.G. Atanasov, J.M. Breuss, V.M. Dirsch, and P. Uhrin. 2015. Indirubin and indirubin derivatives for counteracting proliferative diseases. Evidence-Based Complementary and Alternative Medicine 2015: 1–12.Google Scholar
  18. 18.
    Kim, J.K., E.K. Shin, Y.H. Kang, and J.H.Y. Park. 2011. Indirubin-3-monoxime, a derivative of a Chinese antileukemia medicine, inhibits angiogenesis. Journal of Cellular Biochemistry 112: 384–1391.Google Scholar
  19. 19.
    Ravichandran, K., A. Pal, and R. Ravichandran. 2010. Effect of indirubin-3-monoxime against lung cancer as evaluated by histological and transmission electron microscopic studies. Microscopy Research and Technique 73: 1053–1058.CrossRefPubMedGoogle Scholar
  20. 20.
    Perabo, F.G., G. Landwehrs, C. Frossler, D.H. Schmidt, and S.C. Mueller. 2011. Anti- proliferative and apoptosis inducing effects of indirubin-3-monoxime in renal cell cancer cells. Urologic Oncology 29: 815–820.CrossRefPubMedGoogle Scholar
  21. 21.
    Varela, A.T., A.M. Simoes, J.S. Teodoro, F.V. Duarte, A.P. Gomes, C.M. Palmeira, and A.P. Rolo. 2010. Indirubin-3-oxime prevents hepatic I/R damage by inhibiting GSK-3beta and mitochondrial permeability transition. Mitochondrion 10: 456–463.CrossRefPubMedGoogle Scholar
  22. 22.
    Polychronopoulos, P., P. Magiatis, A.L. Skaltsounis, V. Myrianthopoulos, E. Mikros, A. Tarricone, A. Musacchio, S.M. Roe, L. Pearl, M. Leost, P. Greengard, and L. Meijer. 2004. Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases. Journal of Medicinal Chemistry 47: 935–946.CrossRefPubMedGoogle Scholar
  23. 23.
    Li, D., N. Zhang, Y. Cao, W. Zhang, G. Su, Y. Sun, and M. Guo. 2013. Emodin ameliorates lipopolysaccharide-induced mastitis in mice by inhibiting activation of NF-kB and MAPKs signal pathways. European Journal of Pharmacology 705: 79–85.CrossRefPubMedGoogle Scholar
  24. 24.
    Ip, M.M., P.A. Masso-Welch, S.F. Shoemaker, W.K. Shea-Eaton, and C. Ip. 1999. Conjugated linoleic acid inhibits proliferation and induces apoptosis of normal rat mammary epithelial cells in primary culture. Experimental Cell Research 250: 22–34.CrossRefPubMedGoogle Scholar
  25. 25.
    Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402–408.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen, S.T., J.Y. Li, Y. Zhang, X. Gao, and H. Cai. 2012. Recombinant MPT83 derived from Mycobacterium tuberculosis induces cytokine production and upregulates the function of mouse macrophages through TLR2. The Journal of Immunology 188: 668–677.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang, Q., Y. Yang, S. Yan, J. Liu, Z. Xu, J. Yu, and M. Jin. 2015. A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway. Frontiers in Microbiology 6: 178.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang, T., M. Guo, X. Song, Z. Zhang, H. Jiang, W. Wang, and N. Zhang. 2014. Stevioside plays an anti-inflammatory role by regulating the NF-kB and MAPK pathways in S. aureus-infected mouse mammary glands. Inflammation 37: 1837–1846.CrossRefPubMedGoogle Scholar
  29. 29.
    Nayak, L., L. Goduni, Y. Takami, N. Sharma, P. Kapil, M.K. Jain, and G.H. Mahabeleshwar. 2013. Kruppel-like factor 2 is a transcriptional regulator of chronic and acute inflammation. The American Journal of Pathology 182: 1696–1704.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhao, X., and P. Lacasse. 2008. Mammary tissue damage during bovine mastitis causes and control. Journal of Animal Science 86: 57–65.CrossRefGoogle Scholar
  31. 31.
    Babra, C., J.G. Tiwari, G. Pier, T.H. Thein, R. Sunagar, S. Sundareshan, S. Isloor, Na R. Hegde, S. de Wet, M. Deighton, J. Gibson, P. Costantino, J. Wetherall, and T. Mukkur. 2013. The persistence of biofilm-associated antibiotic resistance of Staphylococcus aureus isolated from clinical bovine mastitis cases in Australia. Folia Microbiologica 58: 469–474.CrossRefPubMedGoogle Scholar
  32. 32.
    Senegas, A., O. Villard, A. Neuville, L. Marcellin, A.W. Pfaff, T. Steinmetz, M. Mousli, J.P. Klein, and E. Candolfi. 2009. Toxoplasma gondii-induced foetal resorption in mice involves interferon-mamma-induced apoptosis and spiral artery dilation at the matermofoetal interface. International Journal for Parasitology 39: 481–487.CrossRefPubMedGoogle Scholar
  33. 33.
    Takahashi, K., H.S.W. Schaffer, and J. Azuma. 1992. Effect of taurine on intracellular calcium dynamics of cultured myocardial cells during the calcium paradox. Advances in Experimental Medicine and Biology 315: 153–161.CrossRefPubMedGoogle Scholar
  34. 34.
    Li, F., D. Liang, Z. Yang, T. Wang, W. Wang, X. Song, M. Guo, E. Zhou, D. Li, Y. Cao, and N. Zhang. 2013. Astragalin suppresses inflammatory responses via down-regulation of NF-kB signaling pathway in lipopolysaccharide-induced mastitis in a murine model. International Immunopharmacology 17: 478–482.CrossRefPubMedGoogle Scholar
  35. 35.
    Song, X., W. Zhang, T. Wang, H. Jiang, Z. Zhang, Y. Fu, Z. Yang, Y. Cao, and N. Zhang. 2014. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathway in lipopolysaccharide-induced mastitis in mice. Inflammation 37: 1588–98.CrossRefPubMedGoogle Scholar
  36. 36.
    Ding, Y., A. Qiao, and G.H. Fan. 2014. Indirubin-3′-monoxime rescues spatial memory deficits and attenuates beta-amyloid-associated neuropathology in a mouse model of Alzheimer’s disease. Neurobiology of Disease 39: 156–168.CrossRefGoogle Scholar
  37. 37.
    Hoessel, R., S. Leclerc, J.A. Endicott, et al. 1999. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nature Cell Biology 1: 60–67.CrossRefPubMedGoogle Scholar
  38. 38.
    Higashimoto, T.A., C.L. Panopoulos, and E. Zandi. 2006. TNF alpha induces chromosomal abnormalities independent of ROS through IKK, JNK, p38 and caspase pathways. Cytokine 34: 39–50.CrossRefPubMedGoogle Scholar
  39. 39.
    Yoon, W.J., J.Y. Moon, J.Y. Kang, N.H. Lee, and C.G. Hyun. 2010. Neolitsea sericea essential oil attenuates LPS-induced inflammation in RAW 264.7 macrophages by suppressing NF-kappa B and MAPK activation. Natural Product Communications 5: 1311–1316.PubMedGoogle Scholar
  40. 40.
    Ho, A.W., C.K. Wong, and C.W. Lam. 2008. Tumor necrosis factor alpha up-regulates the expression of CCL2 and adhesion molecules of human proximal tubular epithelial cells through MAPK signaling pathways. Immunobiology 213: 533–544.CrossRefPubMedGoogle Scholar
  41. 41.
    Shalaby, M.R., B.B. Aggarwal, E. Rinderknecht, L.P. Svedersky, B.S. Finkle, and M.A. Palladino Jr. 1985. Activation of human polymorphonuclear neutrophil functions by interferon-gamma and tumor necrosis factors. Journal of Immunology 135: 2069–2073.Google Scholar
  42. 42.
    Morita, I. 2002. Distinct functions of COX-1 and COX-2. Prostaglandins & Other Lipid Mediators 68–69: 165–175.CrossRefGoogle Scholar
  43. 43.
    Strandberg, Y., C. Gray, T. Vuocolo, L. Donaldson, M. Broadway, and R. Tellam. 2005. Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine 1: 72–86.CrossRefGoogle Scholar
  44. 44.
    Duntas, L.H. 2009. Selenium and inflammation: underlying anti-inflammatory mechanisms. Hormone and Metabolic Research 41: 443–447.CrossRefPubMedGoogle Scholar
  45. 45.
    Vunta, H., B.J. Belda, R.J. Arner, C. Channa Reddy, John P. Vanden Heuvel, and K. Sandeep Prabhu. 2008. Selenium attenuates pro-inflammatory gene expression in macrophages. Molecular Nutrition & Food Research 52: 1316–1323.CrossRefGoogle Scholar
  46. 46.
    Pfaffl, M.W., S.L. Wittmann, H.H. Meyer, and R.M. Bruckmaier. 2003. Gene expression of immunologically important factors in blood cells, milk cells, and mammary tissue of cows. Journal of Dairy Science 86: 538–545.CrossRefPubMedGoogle Scholar
  47. 47.
    Akira, S., K. Takeda, and T. Kaisho. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology 2: 675–680.CrossRefPubMedGoogle Scholar
  48. 48.
    Beutler, B., K. Hoebe, X. Du, and R.J. Ulevitch. 2003. How we detect microbes and respond to them: the Toll-like receptors and their transducers. Journal of Leukocyte Biology 74: 479–485.CrossRefPubMedGoogle Scholar
  49. 49.
    Vunta, H., F. Davis, U.D. Palempalli, D. Bhat, R.J. Arner, J.T. Thompson, and K.S. Prabhu. 2007. The anti-inflammatory effects of selenium are mediated through 15-deoxy-Δ12, 14-prostaglandin J2 in macrophages. Journal of Biological Chemistry 282: 17964–17973.CrossRefPubMedGoogle Scholar
  50. 50.
    Oh, Y.C., W.K. Cho, Y.H. Jeong, G.Y. Im, A. Kim, Y.H. Hwang, and J.Y. Ma. 2012. A novel herbal medicine KIOM-MA exerts an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophage cells. Evidence-Based Complementary and Alternative Medicine 2012: 1–11.Google Scholar
  51. 51.
    Hayden, M.S., and S. Ghosh. 2012. NF-kappa B, the first quarter-century: remarkable progress and outstanding questions. Genes and Development 6: 203–234.CrossRefGoogle Scholar
  52. 52.
    Vallabhapurapu, S., and M. Karin. 2009. Regulation and function of NF-kappa B transcription factors in the immune system. Annual Review of Immunology 27: 693–733.CrossRefPubMedGoogle Scholar
  53. 53.
    Liang, C.J., C.W. Lee, H.C. Sung, Y.H. Chen, Y.C. Chiang, H.Y. Hsu, and Y.L. Chen. 2014. Ganoderma lucidum polysaccharides reduce lipopolysaccharide-induced interleukin-1β expression in cultured smooth muscle cells and in thoracic aortas in mice. Evidence-Based Complementary and Alternative Medicine 2014: 305149.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Remppis, A., F. Bea, H.J. Greten, A. Buttler, H. Wang, Q. Zhou, and E. Blessing. 2010. Rhizoma coptidis inhibits LPS-induced MCP-1/CCL2 production in murine macrophages via an AP-1 and NF-kB-dependent pathway. Mediators of Inflammation 2010: 194896.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kaminska, B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta 1754: 253–262.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jin-lun Lai
    • 1
  • Yu-hui Liu
    • 1
  • Chang Liu
    • 1
  • Ming-pu Qi
    • 1
  • Rui-ning Liu
    • 1
  • Xi-fang Zhu
    • 1
  • Qiu-ge Zhou
    • 1
  • Ying-yu Chen
    • 1
    • 2
  • Ai-zhen Guo
    • 1
    • 2
    Email author
  • Chang-min Hu
    • 1
    • 2
    Email author
  1. 1.The Faculty of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
  2. 2.State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina

Personalised recommendations