, Volume 39, Issue 4, pp 1434–1440 | Cite as

A Recombinant DNA Plasmid Encoding the sIL-4R-NAP Fusion Protein Suppress Airway Inflammation in an OVA-Induced Mouse Model of Asthma

  • Xin Liu
  • Guo Fu
  • Zhenyu Ji
  • Xiabing Huang
  • Cong Ding
  • Hui Jiang
  • Xiaolong Wang
  • Mingxuan Du
  • Ting WangEmail author
  • Qiaozhen KangEmail author


Asthma is a chronic inflammatory airway disease. It was prevalently perceived that Th2 cells played the crucial role in asthma pathogenesis, which has been identified as the important target for anti-asthma therapy. The soluble IL-4 receptor (sIL-4R), which is the decoy receptor for Th2 cytokine IL-4, has been reported to be effective in treating asthma in phase I/II clinical trail. To develop more efficacious anti-asthma agent, we attempt to test whether the Helicobacter pylori neutrophil-activating protein (HP-NAP), a novel TLR2 agonist, would enhance the efficacy of sIL-4R in anti-asthma therapy. In our work, we constructed a pcDNA3.1-sIL-4R-NAP plasmid, named PSN, encoding fusion protein of murine sIL-4R and HP-NAP. PSN significantly inhibited airway inflammation, decreased the serum OVA-specific IgE levels and remodeled the Th1/Th2 balance. Notably, PSN is more effective on anti-asthma therapy comparing with plasmid only expressing sIL-4R.


asthma HP-NAP sIL-4R Th1/Th2 



This study was supported by the National Natural Science Foundation of China (81373119 and 81571526) and Foundation of He’nan Educational Committee (16A180019).

Supplementary material

10753_2016_375_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 13 kb)


  1. 1.
    Tillie-Leblond, I., D. Montani, B. Crestani, J. de Blic, M. Humbert, M. Tunon-de-Lara, A. Magnan, N. Roche, J. Ostinelli, and P. Chanez. 2009. Relation between inflammation and symptoms in asthma. Allergy 64(3): 354–367.CrossRefPubMedGoogle Scholar
  2. 2.
    Liu, J., Y. Cheng, X. Zhang, X. Zhang, S. Chen, Z. Hu, C. Zhou, E. Zhang, and S. Ma. 2015. Astragalin attenuates allergic inflammation in a murine asthma model. Inflammation 38(5): 2007–2016.CrossRefPubMedGoogle Scholar
  3. 3.
    Bosnjak, B., B. Stelzmueller, K.J. Erb, and M.M. Epstein. 2011. Treatment of allergic asthma: modulation of Th2 cells and their responses. Respiratory Research 12(114).Google Scholar
  4. 4.
    Chung, K.F. 2015. Targeting the interleukin pathway in the treatment of asthma. Lancet 386(9998): 1086–1096.CrossRefPubMedGoogle Scholar
  5. 5.
    Finkelman, F.D., S.P. Hogan, G.K.K. Hershey, M.E. Rothenberg, and M. Wills-Karp. 2010. Importance of cytokines in murine allergic airway disease and human asthma. Journal of Immunology 184(4): 1663–1674.CrossRefGoogle Scholar
  6. 6.
    Borish, L.C., H.S. Nelson, M.J. Lanz, L. Claussen, J.B. Whitmore, J.M. Agosti, and L. Garrison. 1999. Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. American Journal of Respiratory and Critical Care Medicine 160(6): 1816–1823.CrossRefPubMedGoogle Scholar
  7. 7.
    Maes, T., G.F. Joos, and G.G. Brusselle. 2012. Targeting interleukin-4 in asthma: lost in translation? American Journal of Respiratory Cell and Molecular Biology 47(3): 261–270.CrossRefPubMedGoogle Scholar
  8. 8.
    Steinke, J.W., and L. Borish. 2001. Th2 cytokines and asthma. Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respiratory Research 2(2): 66–70.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Henderson, W.J., E.Y. Chi, and C.R. Maliszewski. 2000. Soluble IL-4 receptor inhibits airway inflammation following allergen challenge in a mouse model of asthma. Journal of Immunology 164(2): 1086–1095.CrossRefGoogle Scholar
  10. 10.
    Borish, L.C., H.S. Nelson, J. Corren, G. Bensch, W.W. Busse, J.B. Whitmore, and J.M. Agosti. 2001. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. The Journal of Allergy and Clinical Immunology 107(6): 963–970.CrossRefPubMedGoogle Scholar
  11. 11.
    Aryan, Z., S.T. Holgate, D. Radzioch, and N. Rezaei. 2014. A new era of targeting the ancient gatekeepers of the immune system: toll-like agonists in the treatment of allergic rhinitis and asthma. International Archives of Allergy and Immunology 164(1): 46–63.CrossRefPubMedGoogle Scholar
  12. 12.
    Xiao, H.T., Z. Liao, L. Chen, and R.S. Tong. 2012. A promising approach for asthma treatment by multiwayly modulating toll-like receptors. European Review for Medical and Pharmacological Sciences 16(15): 2088–2091.PubMedGoogle Scholar
  13. 13.
    D’Elios, M.M., A. Amedei, A. Cappon, G. Del Prete, and M. de Bernard. 2007. The neutrophil-activating protein of Helicobacter pylori (HP-NAP) as an immune modulating agent. FEMS Immunology and Medical Microbiology 50(2): 157–164.CrossRefPubMedGoogle Scholar
  14. 14.
    Cappon, A., C. Babolin, D. Segat, L. Cancian, A. Amedei, F. Calzetti, M.A. Cassatella, M.M. D’Elios, and M. de Bernard. 2010. Helicobacter pylori-derived neutrophil-activating protein increases the lifespan of monocytes and neutrophils. Cellular Microbiology 12(6): 754–764.CrossRefPubMedGoogle Scholar
  15. 15.
    Amedei, A. 2006. The neutrophil-activating protein of Helicobacter pylori promotes Th1 immune responses. The Journal of Clinical Investigation 116(4): 1092–1101.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fu, H. 2014. Helicobacter pylori neutrophil-activating protein: from molecular pathogenesis to clinical applications. World Journal of Gastroenterology 20(18): 5294–5301.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Codolo, G., P. Mazzi, A. Amedei, P.G. Del, G. Berton, M.M. D’Elios, and M. de Bernard. 2008. The neutrophil-activating protein of Helicobacter pylori down-modulates Th2 inflammation in ovalbumin-induced allergic asthma. Cellular Microbiology 10(11): 2355–2363.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee, J.J., D. Dimina, M.P. Macias, S.I. Ochkur, M.P. McGarry, K.R. O’Neill, C. Protheroe, R. Pero, T. Nguyen, S.A. Cormier, E. Lenkiewicz, D. Colbert, L. Rinaldi, S.J. Ackerman, C.G. Irvin, and N.A. Lee. 2004. Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305(5691): 1773–1776.CrossRefPubMedGoogle Scholar
  19. 19.
    Newcomb, D.C., and R.S. Peebles. 2013. Th17-mediated inflammation in asthma. Current Opinion in Immunology 25(6): 755–760.CrossRefPubMedGoogle Scholar
  20. 20.
    Jiang, H., X. Wu, H. Zhu, Y. Xie, S. Tang, and Y. Jiang. 2015. FOXP3(+)Treg/Th17 cell imbalance in lung tissues of mice with asthma. Int J Clin Exp Med 8(3): 4158–4163.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Shi, Y.H., G.C. Shi, H.Y. Wan, L.H. Jiang, X.Y. Ai, H.X. Zhu, W. Tang, J.Y. Ma, X.Y. Jin, and B.Y. Zhang. 2011. Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with allergic asthma. Chinese Medical Journal 124(13): 1951–1956.PubMedGoogle Scholar
  22. 22.
    Durrant, D.M., and D.W. Metzger. 2010. Emerging roles of T helper subsets in the pathogenesis of asthma. Immunological Investigations 39(4–5): 526–549.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liang, S.C., A.J. Long, F. Bennett, M.J. Whitters, R. Karim, M. Collins, S.J. Goldman, K. Dunussi-Joannopoulos, C.M. Williams, J.F. Wright, and L.A. Fouser. 2007. An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. Journal of Immunology 179(11): 7791–7799.CrossRefGoogle Scholar
  24. 24.
    Olin, J.T., and M.E. Wechsler. 2014. Asthma: pathogenesis and novel drugs for treatment. BMJ 349(10): g5517.CrossRefPubMedGoogle Scholar
  25. 25.
    Bice, J.B., E. Leechawengwongs, and A. Montanaro. 2014. Biologic targeted therapy in allergic asthma. Annals of Allergy, Asthma & Immunology 112(2): 108–115.CrossRefGoogle Scholar
  26. 26.
    Beasley, R., A. Semprini, and E.A. Mitchell. 2015. Risk factors for asthma: is prevention possible? Lancet 386(9998): 1075–1085.CrossRefPubMedGoogle Scholar
  27. 27.
    Wegmann, M. 2009. Th2 cells as targets for therapeutic intervention in allergic bronchial asthma. Expert Review of Molecular Diagnostics 9(1): 85–100.CrossRefPubMedGoogle Scholar
  28. 28.
    Hansbro, P.M., G.V. Scott, A.T. Essilfie, R.Y. Kim, M.R. Starkey, D.H. Nguyen, P.D. Allen, G.E. Kaiko, M. Yang, J.C. Horvat, and P.S. Foster. 2013. Th2 cytokine antagonists: potential treatments for severe asthma. Expert Opinion on Investigational Drugs 22(1): 49–69.CrossRefPubMedGoogle Scholar
  29. 29.
    D’Elios, M.M., G. Codolo, A. Amedei, P. Mazzi, G. Berton, G. Zanotti, G. del Prete, and M. de Bernard. 2009. Helicobacter pylori, asthma and allergy. FEMS Immunology and Medical Microbiology 56(1): 1–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Linden, A., and B. Dahlen. 2014. Interleukin-17 cytokine signalling in patients with asthma. The European Respiratory Journal 44(5): 1319–1331.CrossRefPubMedGoogle Scholar
  31. 31.
    McGuirk, P., S.C. Higgins, and K.H. Mills. 2010. The role of regulatory T cells in respiratory infections and allergy and asthma. Current Allergy and Asthma Reports 10(1): 21–28.CrossRefPubMedGoogle Scholar
  32. 32.
    Sehrawat, A., S. Sinha, and A. Saxena. 2015. Helicobacter pylori neutrophil-activating protein: a potential Treg modulator suppressing allergic asthma? Frontiers in Microbiology 6(493).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xin Liu
    • 1
  • Guo Fu
    • 1
    • 3
  • Zhenyu Ji
    • 2
  • Xiabing Huang
    • 1
  • Cong Ding
    • 1
  • Hui Jiang
    • 1
  • Xiaolong Wang
    • 1
  • Mingxuan Du
    • 1
  • Ting Wang
    • 1
    Email author
  • Qiaozhen Kang
    • 1
    Email author
  1. 1.School of Life SciencesZhengzhou UniversityZhengzhouPeople’s Republic of China
  2. 2.Henan Academy of Medical and Pharmaceutical SciencesZhengzhouChina
  3. 3.Center for Clinical Molecular Medicine, Children’s HospitalChongqing Medical UniversityChongqingChina

Personalised recommendations