, Volume 39, Issue 3, pp 1004–1016 | Cite as

Propofol Protects Rats and Human Alveolar Epithelial Cells Against Lipopolysaccharide-Induced Acute Lung Injury via Inhibiting HMGB1 Expression

  • Xiaoyan Wang
  • Chengxiao Liu
  • Gongming WangEmail author


High-mobility group box 1 (HMGB1) plays a key role in the development of acute lung injury (ALI). Propofol, a general anesthetic with anti-inflammatory properties, has been suggested to be able to modulate lipopolysaccharide (LPS)-induced ALI. In this study, we investigated the effects of propofol on the expression of HMGB1 in a rat model of LPS-induced ALI. Rats underwent intraperitoneal injection of LPS to mimic sepsis-induced ALI. Propofol bolus (1, 5, or 10 mg/kg) was infused continuously 30 min after LPS administration, followed by infusion at 5 mg/(kg · h) through the left femoral vein cannula. LPS increased wet to dry weight ratio and myeloperoxidase activity in lung tissues and caused the elevation of total protein and cells, neutrophils, macrophages, and neutrophils in bronchoalveolar lavage fluid (BALF). Moreover, HMGB1 and other cytokine levels were increased in BALF and lung tissues and pathological changes of lung tissues were excessively aggravated in rats after LPS administration. Propofol inhibited all the above effects. It also inhibited LPS-induced toll-like receptor (TLR)2/4 protein upexpression and NF-κB activation in lung tissues and human alveolar epithelial cells. Propofol protects rats and human alveolar epithelial cells against HMGB1 expression in a rat model of LPS-induced ALI. These effects may partially result from reductions in TLR2/4 and NF-κB activation.


propofol HMGB1 LPS NF-κB TLR4 acute lung injury 



This work was supported by the National Natural Science Foundation of China (NSF 30872433).

Author Contributions

Xiaoyan Wang: conception, design, analysis, and interpretation of data; writing the manuscript.

Gongming Wang: conception, design, analysis, and interpretation of data; writing the manuscript.

Chengxiao Liu: analysis and interpretation of data; writing the manuscript.

Compliance with Ethical Standards

All procedures were performed in accordance with the Declaration of Helsinki of the World Medical Association. The study was approved by the ethics committee of Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.

Conflicts of Interest

The authors report no proprietary or commercial interest in any product mentioned, or concept discussed, in this article.


  1. 1.
    Su, C.F., S.J. Kao, and H.I. Chen. 2012. Acute respiratory distress syndrome and lung injury: pathogenetic mechanism and therapeutic implication. World Journal Critical Care Medicine 1: 50–60.CrossRefGoogle Scholar
  2. 2.
    Castellheim, A., O.L. Brekke, T. Espevik, M. Harboe, and T.E. Mollnes. 2009. Innate immune responses to danger signals in systemic inflammatory response syndrome and sepsis. Scandinavian Journal of Immunology 69: 479–491.CrossRefPubMedGoogle Scholar
  3. 3.
    Jing, H., J. Yao, X. Liu, H. Fan, F. Zhang, Z. Li, X. Tian, and Y. Zhou. 2014. Fish-oil emulsion (omega-3 polyunsaturated fatty acids) attenuates acute lung injury induced by intestinal ischemia-reperfusion through adenosine 5′-monophosphate-activated protein kinase-sirtuin1 pathway. Journal of Surgical Research 187: 252–261.CrossRefPubMedGoogle Scholar
  4. 4.
    Song, Z., X. Zhao, Y. Gao, M. Liu, M. Hou, H. Jin, and Y. Cui. 2015. Recombinant human brain natriuretic peptide ameliorates trauma-induced acute lung injury via inhibiting JAK/STAT signaling pathway in rats. Journal Trauma Acute Care Surgery 78: 980–987.CrossRefGoogle Scholar
  5. 5.
    Lin, W.C., C.W. Chen, Y.W. Huang, L. Chao, J. Chao, Y.S. Lin, and C.F. Lin. 2015. Kallistatin protects against sepsis-related acute lung injury via inhibiting inflammation and apoptosis. Scientific Reports 5: 12463.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lu, B., C. Wang, M. Wang, W. Li, F. Chen, K.J. Tracey, and H. Wang. 2014. Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Review of Clinical Immunology 10: 713–727.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Agalave, N.M., and C.I. Svensson. 2015. Extracellular high-mobility group box 1 protein (HMGB1) as a mediator of persistent pain. Molecular Medicine 20: 569–578.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang, H., M.F. Ward, and A.E. Sama. 2014. Targeting HMGB1 in the treatment of sepsis. Expert Opinion on Therapeutic Targets 18: 257–268.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang, H., O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, K.R. Manogue, E. Faist, E. Abraham, J. Andersson, U. Andersson, P.E. Molina, N.N. Abumrad, A. Sama, and K.J. Tracey. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251.CrossRefPubMedGoogle Scholar
  10. 10.
    Lutz, W., and J. Stetkiewicz. 2004. High mobility group box 1 protein as a late-acting mediator of acute lung inflammation. International Journal of Occupational Medicine and Environmental Health 17: 245–254.PubMedGoogle Scholar
  11. 11.
    Yang, H., M. Ochani, J. Li, X. Qiang, M. Tanovic, H.E. Harris, S.M. Susarla, L. Ulloa, H. Wang, R. DiRaimo, C.J. Czura, J. Roth, H.S. Warren, M.P. Fink, M.J. Fenton, U. Andersson, and K.J. Tracey. 2004. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proceedings of the National Academy of Sciences of the United States of America 101: 296–301.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ye, C., J.G. Choi, S. Abraham, H. Wu, D. Diaz, D. Terreros, P. Shankar, and N. Manjunath. 2012. Human macrophage and dendritic cell-specific silencing of high-mobility group protein B1 ameliorates sepsis in a humanized mouse model. Proceedings of the National Academy of Sciences of the United States of America 109: 21052–21057.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    van Beijnum, J.R., W.A. Buurman, and A.W. Griffioen. 2008. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11: 91–99.CrossRefPubMedGoogle Scholar
  14. 14.
    Park, J.S., F. Gamboni-Robertson, Q. He, D. Svetkauskaite, J.Y. Kim, D. Strassheim, J.W. Sohn, S. Yamada, I. Maruyama, A. Banerjee, A. Ishizaka, and E. Abraham. 2006. High mobility group box 1 protein interacts with multiple toll-like receptors. American Journal of Physiology - Cell Physiology 290: C917–C924.CrossRefPubMedGoogle Scholar
  15. 15.
    Kim, S., S.Y. Kim, J.P. Pribis, M. Lotze, K.P. Mollen, R. Shapiro, P. Loughran, M.J. Scott, and T.R. Billiar. 2013. Signaling of high mobility group box 1 (HMGB1) through toll-like receptor 4 in macrophages requires CD14. Molecular Medicine 19: 88–98.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hirata, Y., H. Kurobe, M. Higashida, D. Fukuda, M. Shimabukuro, K. Tanaka, Y. Higashikuni, T. Kitagawa, and M. Sata. 2013. HMGB1 plays a critical role in vascular inflammation and lesion formation via toll-like receptor 9. Atherosclerosis 231: 227–233.CrossRefPubMedGoogle Scholar
  17. 17.
    Bao, H.G., and S. Li. 2011. Effects of propofol on the outcomes of rats with sepsis. Journal of Surgical Research 168: e111–e115.CrossRefPubMedGoogle Scholar
  18. 18.
    Song, X.M., Y.L. Wang, J.G. Li, C.Y. Wang, Q. Zhou, Z.Z. Zhang, and H. Liang. 2009. Effects of propofol on pro-inflammatory cytokines and nuclear factor kappaB during polymicrobial sepsis in rats. Molecular Biology Reports 36: 2345–2351.CrossRefPubMedGoogle Scholar
  19. 19.
    Chiu, W.T., Y.L. Lin, C.W. Chou, and R.M. Chen. 2009. Propofol inhibits lipoteichoic acid-induced iNOS gene expression in macrophages possibly through downregulation of toll-like receptor 2-mediated activation of Raf-MEK1/2-ERK1/2-IKK-NFkappaB. Chemico-Biological Interactions 181: 430–439.CrossRefPubMedGoogle Scholar
  20. 20.
    Ma, L., X.Y. Wu, L.H. Zhang, W.M. Chen, A. Uchiyama, T. Mashimo, and Y. Fujino. 2013. Propofol exerts anti-inflammatory effects in rats with lipopolysaccharide-induced acute lung injury by inhibition of CD14 and TLR4 expression. Brazilian Journal of Medical and Biological Research 46: 299–305.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang, T., X.Y. Wei, B. Liu, L.J. Wang, and L.H. Jiang. 2015. Effects of propofol on lipopolysaccharide-induced expression and release of HMGB1 in macrophages. Brazilian Journal of Medical and Biological Research 48: 286–291.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Liang, C., J. Cang, H. Wang, and Z. Xue. 2013. Propofol attenuates cerebral ischemia/reperfusion injury partially using heme oxygenase-1. Journal of Neurosurgical Anesthesiology 25: 311–316.CrossRefPubMedGoogle Scholar
  23. 23.
    Shen, W., J. Gan, S. Xu, G. Jiang, and H. Wu. 2009. Penehyclidine hydrochloride attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway. Pharmacological Research 60: 296–302.CrossRefPubMedGoogle Scholar
  24. 24.
    Chu, C.H., D. David Liu, Y.H. Hsu, K.C. Lee, and H.I. Chen. 2007. Propofol exerts protective effects on the acute lung injury induced by endotoxin in rats. Pulmonary Pharmacology & Therapeutics 20: 503–512.CrossRefGoogle Scholar
  25. 25.
    Li, S., H. Bao, L. Han, and L. Liu. 2010. Effects of propofol on early and late cytokines in lipopolysaccharide-induced septic shock in rats. Journal Biomedical Research 24: 389–394.CrossRefGoogle Scholar
  26. 26.
    Wei, L., H. Matsumoto, and H. Yamaguchi. 2013. Propofol attenuates lipopolysaccharide-induced monocyte chemoattractant protein-1 production through p38 MAPK and SAPK/JNK in alveolar epithelial cells. Journal of Anesthesia 27: 366–373.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhao L.L., Hu G.C., Zhu S.S., Li J.F. and Liu G.J. 2014. Propofol pretreatment attenuates lipopolysaccharide-induced acute lung injury in rats by activating the phosphoinositide-3-kinase/Akt pathway. Brazilian Journal of Medical and Biological Research. Google Scholar
  28. 28.
    Gokcinar, D., V. Ergin, A. Cumaoglu, A. Menevse, and A. Aricioglu. 2013. Effects of ketamine, propofol, and ketofol on proinflammatory cytokines and markers of oxidative stress in a rat model of endotoxemia-induced acute lung injury. Acta Biochimica Polonica 60: 451–456.PubMedGoogle Scholar
  29. 29.
    Feng, G., B. Sun, and T.Z. Li. 2015. Daidzein attenuates lipopolysaccharide-induced acute lung injury via toll-like receptor 4/NF-kappaB pathway. International Immunopharmacology 26: 392–400.CrossRefPubMedGoogle Scholar
  30. 30.
    Tianzhu, Z., and W. Shumin. 2015. Esculin inhibits the inflammation of LPS-induced acute lung injury in mice via regulation of TLR/NF-kappaB pathways. Inflammation 38: 1529–1536.CrossRefPubMedGoogle Scholar
  31. 31.
    Kawasaki, T., and T. Kawai. 2014. Toll-like receptor signaling pathways. Frontiers in Immunology 5: 461.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chang, Y., X. Huang, Z. Liu, G. Han, L. Huang, Y.C. Xiong, and Z. Wang. 2013. Dexmedetomidine inhibits the secretion of high mobility group box 1 from lipopolysaccharide-activated macrophages in vitro. Journal of Surgical Research 181: 308–314.CrossRefPubMedGoogle Scholar
  33. 33.
    Liu, Z., J. Zhang, X. Huang, L. Huang, S. Li, and Z. Wang. 2013. Magnesium sulfate inhibits the secretion of high mobility group box 1 from lipopolysaccharide-activated RAW264.7 macrophages in vitro. Journal of Surgical Research 179: e189–e195.CrossRefPubMedGoogle Scholar
  34. 34.
    Liu, Z., Y. Chang, J. Zhang, X. Huang, J. Jiang, S. Li, and Z. Wang. 2013. Magnesium deficiency promotes secretion of high-mobility group box 1 protein from lipopolysaccharide-activated macrophages in vitro. Journal of Surgical Research 180: 310–316.CrossRefPubMedGoogle Scholar
  35. 35.
    Yang, Q., X. Liu, Z. Yao, S. Mao, Q. Wei, and Y. Chang. 2014. Penehyclidine hydrochloride inhibits the release of high-mobility group box 1 in lipopolysaccharide-activated RAW264.7 cells and cecal ligation and puncture-induced septic mice. Journal of Surgical Research 186: 310–317.CrossRefPubMedGoogle Scholar
  36. 36.
    Mackenzie, N., and I.S. Grant. 1987. Propofol for intravenous sedation. Anaesthesia 42: 3–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Shao, H., J. Li, Y. Zhou, Z. Ge, J. Fan, Z. Shao, and Y. Zeng. 2008. Dose-dependent protective effect of propofol against mitochondrial dysfunction in ischaemic/reperfused rat heart: role of cardiolipin. British Journal of Pharmacology 153: 1641–1649.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Li, J., B. Han, X. Ma, and S. Qi. 2010. The effects of propofol on hippocampal caspase-3 and Bcl-2 expression following forebrain ischemia-reperfusion in rats. Brain Research 1356: 11–23.CrossRefPubMedGoogle Scholar
  39. 39.
    Karashima, Y., M. Oike, S. Takahashi, and Y. Ito. 2002. Propofol prevents endothelial dysfunction induced by glucose overload. British Journal of Pharmacology 137: 683–691.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang, B., T. Luo, D. Chen, and D.M. Ansley. 2007. Propofol reduces apoptosis and up-regulates endothelial nitric oxide synthase protein expression in hydrogen peroxide-stimulated human umbilical vein endothelial cells. Anesthesia and Analgesia 105: 1027–1033. Table of contents.CrossRefPubMedGoogle Scholar
  41. 41.
    Vasile, B., F. Rasulo, A. Candiani, and N. Latronico. 2003. The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Medicine 29: 1417–1425.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of AnesthesiologyShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina

Personalised recommendations