Advertisement

Inflammation

, Volume 39, Issue 2, pp 786–797 | Cite as

Protective Effects of Nobiletin Against Endotoxic Shock in Mice Through Inhibiting TNF-α, IL-6, and HMGB1 and Regulating NF-κB Pathway

  • Weifeng Li
  • Xiumei Wang
  • Xiaofeng NiuEmail author
  • Hailin Zhang
  • Zehong He
  • Yu Wang
  • Wenbing Zhi
  • Fang Liu
ORIGINAL ARTICLE

Abstract

Nobiletin (NOB), the major bioactive component of polymethoxyflavones in citrus fruits, has been reported possessing significant biological properties. The purpose of the present study was to investigate the protective role of NOB on lipopolysaccharide (LPS)-induced endotoxic shock in mice. We found pretreatment with NOB increases the survival rate of mice after endotoxin injection. The present study clearly demonstrates that pretreatment with NOB decreases the production of early pro-inflammatory cytokines TNF-α, IL-6, and late-phase mediator HMGB1 in serum and tissues of kidney, lung, and liver. The histopathological study indicates that NOB administration significantly attenuate tissues injury induced by LPS. Moreover, NOB suppresses the activity of nuclear factor-kappa B (NF-κB). These results suggest that NOB protects mice against LPS-induced endotoxic shock through inhibiting the production of TNF-α, IL-6, and HMGB1 and the activation of NF-κB, which elucidate that NOB may be a promising drug candidate for the treatment of septic shock.

KEY WORDS

nobiletin endotoxic shock pro-inflammatory cytokine NF-κB 

Notes

Acknowledgments

This research was financially supported in part by Shanxi National Science Foundation of international cooperation projects (no. 2013KW26-02) to W.F Li.

Compliance with Ethical Standards

Conflict of Interest

The authors have declared that there is no conflict of interest.

References

  1. 1.
    Karima, R., S. Matsumoto, H. Higashi, and K. Matsushima. 1999. The molecular pathogenesis of endotoxic shock and organ failure. Molecular Medicine Today 5: 123–132.CrossRefPubMedGoogle Scholar
  2. 2.
    Bone, R.C., C.J. Grodzin, and R.A. Balk. 1997. Sepsis: a new hypothesis for pathogenesis of the disease process. CHEST Journal 112: 235–243.CrossRefGoogle Scholar
  3. 3.
    Angus, D.C., W.T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, and M.R. Pinsky. 2001. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Critical Care Medicine 29: 1303–1310.CrossRefPubMedGoogle Scholar
  4. 4.
    Yan, Y., H. Zhou, H. Gao, L. Chen, L. Chen, L. Gao, et al. 2013. Endogenous hydrogen sulfide formation mediates the liver damage in endotoxemic rats. Research in Veterinary Science 94: 590–595.CrossRefPubMedGoogle Scholar
  5. 5.
    Moss, M. 2005. Epidemiology of sepsis: race, sex, and chronic alcohol abuse. Clinical Infectious Diseases 41: S490–S497.CrossRefPubMedGoogle Scholar
  6. 6.
    Marshall, J.C. 2003. Such stuff as dreams are made on: mediator-directed therapy in sepsis. Nature Reviews Drug Discovery 2: 391–405.CrossRefPubMedGoogle Scholar
  7. 7.
    Paterson, R., and N. Webster. 2000. Sepsis and the systemic inflammatory response syndrome. Journal of the Royal College of Surgeons of Edinburgh 45: 178–182.PubMedGoogle Scholar
  8. 8.
    Lappin, E., and A.J. Ferguson. 2009. Gram-positive toxic shock syndromes. The Lancet infectious diseases 9: 281–290.CrossRefPubMedGoogle Scholar
  9. 9.
    Lin, Q., L. Jin, Z. Cao, H. Li, and Y. Xu. 2008. Protective effect of Acanthopanax senticosus extract against endotoxic shock in mice. Journal of Ethnopharmacology 118: 495–502.CrossRefPubMedGoogle Scholar
  10. 10.
    Leeman, J.R., and T.D. Gilmore. 2008. Alternative splicing in the NF-κB signaling pathway. Gene 423: 97–107.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu, L., Q. Mu, W. Li, W. Xing, H. Zhang, T. Fan, et al. 2015. Isofraxidin protects mice from LPS challenge by inhibiting pro-inflammatory cytokines and alleviating histopathological changes. Immunobiology 220: 406–413.CrossRefPubMedGoogle Scholar
  12. 12.
    Mei, X., D. Xu, S. Xu, Y. Zheng, and S. Xu. 2012. Novel role of Zn (II)-curcumin in enhancing cell proliferation and adjusting proinflammatory cytokine-mediated oxidative damage of ethanol-induced acute gastric ulcers. Chemico-Biological Interactions 197: 31–39.CrossRefPubMedGoogle Scholar
  13. 13.
    Kishimote, T., S. Akira, and T. Taga. 1992. Interleukln-6 and Its Receptor: a paradigm for cytoklnes. Science 258: 593–597.CrossRefGoogle Scholar
  14. 14.
    Li, S., H. Bao, L. Han, and L. Liu. 2010. Effects of propofol on early and late cytokines in lipopolysaccharide-induced septic shock in rats. Journal of biomedical research 24: 389–394.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sun, N., and C. Chao. 2005. The cytokine activity of HMGB1-extracellular escape of the nuclear protein. Chang Gung Medical Journal 28: 673.PubMedGoogle Scholar
  16. 16.
    Alves, J.N., K.M.P. Pires, M. Lanzetti, M.V. Barroso, C.F. Benjamim, C.A. Costa, et al. 2013. Critical role for CCR2 and HMGB1 in induction of experimental endotoxic shock. Archives of Biochemistry and Biophysics 537: 72–81.CrossRefPubMedGoogle Scholar
  17. 17.
    Asavarut, P., H. Zhao, J. Gu, and D. Ma. 2013. The role of HMGB1 in inflammation-mediated organ injury. Acta Anaesthesiologica Taiwanica 51: 28–33.CrossRefPubMedGoogle Scholar
  18. 18.
    Feng, Y., Q. Yang, J. Xu, G. Qian, and Y. Liu. 2008. Effects of HMGB1 on PMN apoptosis during LPS-induced acute lung injury. Experimental and Molecular Pathology 85: 214–222.CrossRefPubMedGoogle Scholar
  19. 19.
    Lappas, M., M. Permezel, H.M. Georgiou, and G.E. Rice. 2002. Nuclear factor kappa B regulation of proinflammatory cytokines in human gestational tissues in vitro. Biology of Reproduction 67: 668–673.CrossRefPubMedGoogle Scholar
  20. 20.
    O’Sullivan, A.W., J.H. Wang, and H.P. Redmond. 2009. NF-κB and P38 MAPK inhibition improve survival in endotoxin shock and in a cecal ligation and puncture model of sepsis in combination with antibiotic therapy. Journal of Surgical Research 152: 46–53.CrossRefPubMedGoogle Scholar
  21. 21.
    Hayden, M.S., and S. Ghosh. 2008. Shared principles in NF-κB signaling. Cell 132: 344–362.CrossRefPubMedGoogle Scholar
  22. 22.
    De Stefano, D., M.C. Maiuri, B. Iovine, A. Ialenti, M.A. Bevilacqua, and R. Carnuccio. 2006. The role of NF-κB, IRF-1, and STAT-1α transcription factors in the iNOS gene induction by gliadin and IFN-γ in RAW 264.7 macrophages. Journal of Molecular Medicine 84: 65–74.CrossRefPubMedGoogle Scholar
  23. 23.
    Rim, H.K., C.H. Yun, J.S. Shin, Y.W. Cho, D.S. Jang, J.H. Ryu, et al. 2013. 5, 6, 7-Trimethoxyflavone suppresses pro-inflammatory mediators in lipopolysaccharide-induced RAW 264.7 macrophages and protects mice from lethal endotoxin shock. Food and Chemical Toxicology 62: 847–855.CrossRefPubMedGoogle Scholar
  24. 24.
    Ghosh, S., and M.S. Hayden. 2008. New regulators of NF-κB in inflammation. Nature Reviews Immunology 8: 837–848.CrossRefPubMedGoogle Scholar
  25. 25.
    Liu, S.F., and A.B. Malik. 2006. NF-κB activation as a pathological mechanism of septic shock and inflammation. American Journal of Physiology-Lung Cellular and Molecular Physiology 290: L622–L645.CrossRefPubMedGoogle Scholar
  26. 26.
    Pande, V., and M. Ramos. 2005. NF-κB in human disease: current inhibitors and prospects for de novo structure based design of inhibitors. Current Medicinal Chemistry 12: 357–374.CrossRefPubMedGoogle Scholar
  27. 27.
    Nogata, Y., K. Sakamoto, H. Shiratsuchi, T. Ishii, M. Yano, and H. Ohta. 2006. Flavonoid composition of fruit tissues of citrus species. Bioscience, Biotechnology, and Biochemistry 70: 178–192.CrossRefPubMedGoogle Scholar
  28. 28.
    Choi, S., H. Ko, S. Ko, J. Hwang, J. Park, S. Kang, et al. 2007. Correlation between flavonoid content and the NO production inhibitory activity of peel extracts from various citrus fruits. Biological and Pharmaceutical Bulletin 30: 772–778.CrossRefPubMedGoogle Scholar
  29. 29.
    Murakami, A., T. Shigemori, and H. Ohigashi. 2005. Zingiberaceous and citrus constituents, 1’-acetoxychavicol acetate, zerumbone, auraptene, and nobiletin, suppress lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264. 7 murine macrophages through different modes of action. The Journal of nutrition 135: 2987S–2992S.PubMedGoogle Scholar
  30. 30.
    Wu, Y., C. Zhou, J. Tao, and S. Li. 2006. Antagonistic effects of nobiletin, a polymethoxyflavonoid, on eosinophilic airway inflammation of asthmatic rats and relevant mechanisms. Life Sciences 78: 2689–2696.CrossRefPubMedGoogle Scholar
  31. 31.
    Li, Y., L. Gan, G.Q. Li, L. Deng, X. Zhang, and Y. Deng. 2014. Pharmacokinetics of plantamajoside and acteoside from Plantago asiatica in rats by liquid chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 89: 251–256.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang, H., O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, et al. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251.CrossRefPubMedGoogle Scholar
  33. 33.
    Silva, A.T., K.F. Bayston, and J. Cohen. 1990. Prophylactic and therapeutic effects of a monoclonal antibody to tumor necrosis factor- in experimental gram-negative shock. Journal of Infectious Diseases 162: 421–427.CrossRefPubMedGoogle Scholar
  34. 34.
    Ohlsson, K., P. Björk, M. Bergenfeldt, R. Hageman, and R.C. Thompson. 1990. Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 348: 550–552.CrossRefPubMedGoogle Scholar
  35. 35.
    Roth, R.I., D. Su, A.H. Child, N.R. Wainwright, and J. Levin. 1998. Limulus antilipopolysaccharide factor prevents mortality late in the course of endotoxemia. Journal of Infectious Diseases 177: 388–394.CrossRefPubMedGoogle Scholar
  36. 36.
    Adib-Conquy, M., and J.M. Cavaillon. 2007. Stress molecules in sepsis and systemic inflammatory response syndrome. FEBS Letters 581: 3723–3733.CrossRefPubMedGoogle Scholar
  37. 37.
    Chen, F., V. Castranova, X. Shi, and L.M. Demers. 1999. New insights into the role of nuclear factor-κB, a ubiquitous transcription factor in the initiation of diseases. Clinical Chemistry 45: 7–17.PubMedGoogle Scholar
  38. 38.
    Tseng, T., M. Chen, M. Tsai, Y. Hsu, C. Chen, and T.J. Lee. 2012. Oroxylin-A rescues LPS-induced acute lung injury via regulation of NF-κB signaling pathway in rodents.Google Scholar
  39. 39.
    Sun, J., G. Chi, L.W. Soromou, N. Chen, M. Guan, Q. Wu, et al. 2012. Preventive effect of imperatorin on acute lung injury induced by lipopolysaccharide in mice. International Immunopharmacology 14: 369–374.CrossRefPubMedGoogle Scholar
  40. 40.
    Meisner, M., J. Schmidt, M. Schywalsky, and K. Tschaikowsky. 2000. Influence of pyrrolidine dithiocarbamate on the inflammatory response in macrophages and mouse endotoxin shock. International Journal of Immunopharmacology 22: 83–90.CrossRefPubMedGoogle Scholar
  41. 41.
    Wang, M., T. Liu, D. Wang, Y. Zheng, X. Wang, and J. He. 2011. Therapeutic effects of pyrrolidine dithiocarbamate on acute lung injury in rabbits. Journal of Translational Medicine 9: 61.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Weifeng Li
    • 1
  • Xiumei Wang
    • 1
  • Xiaofeng Niu
    • 1
    Email author
  • Hailin Zhang
    • 1
  • Zehong He
    • 1
  • Yu Wang
    • 1
  • Wenbing Zhi
    • 1
  • Fang Liu
    • 1
  1. 1.School of Pharmacy, Xi’an Jiaotong UniversityXi’an CityPeople’s Republic of China

Personalised recommendations