Advertisement

Inflammation

, Volume 39, Issue 2, pp 718–726 | Cite as

Enolase of Streptococcus Suis Serotype 2 Enhances Blood–Brain Barrier Permeability by Inducing IL-8 Release

  • Yingying Sun
  • Na Li
  • Jing Zhang
  • Hongtao Liu
  • Jianfang Liu
  • Xiaojing Xia
  • Changjiang Sun
  • Xin Feng
  • Jingmin Gu
  • Chongtao Du
  • Wenyu Han
  • Liancheng LeiEmail author
ORIGINAL ARTICLE

Abstract

Streptococcus suis serotype 2 (SS2) is an emerging zoonosis, and meningitis is the most frequent clinical manifestation, but mechanism of its virulent factor, enolase (Eno), is unknown in meningitis. In this study, Eno was inducibly expressed and added to an in vitro Transwell co-culture model of the blood–brain barrier (BBB) consisted of porcine brain microvascular endothelial cells (PBMECs) and astrocytes (ACs), the results showed that Eno induces a significant increase in BBB permeability and promotes the release of IL-8 et al. cytokines. Furthermore, IL-8 could significantly destroy the integrity of the BBB model in vitro. In mice models administered Eno for 24 h, Eno could significantly promote Evans blue (EB) moving from the blood to the brain and significantly increased the serum and brain levels of IL-8, as detected by ELISA. While G31P (IL-8 receptor antagonist) significantly decreased the concentration of EB in the brains of mice injected with Eno. The present study demonstrated that SS2 Eno may play an important role in disrupting BBB integrity by prompting IL-8 release.

KEY WORDS

streptococcus suis serotype 2 meningitis blood–brain barrier enolase 

Notes

Acknowledgments

This study was supported by “Public welfare industry-specific special research (Agriculture): Streptococcus suis disease prevention and control technology research and demonstration” (201303041).

Compliance with Ethical Standards

The experimental protocol was conducted with the approval of the Institutional Animal Care and Use Committee of the Jilin University under the approved protocol number JLUA-1309. Moreover, all efforts were made to minimize suffering.

Conflict of Interest

The authors declare that they have no competing interests

References

  1. 1.
    Gottschalk, M., M. Segura, and J. Xu. 2007. Streptococcus suis infections in humans: the Chinese experience and the situation in North America. Animal Health Research Reviews 8: 29–45.CrossRefPubMedGoogle Scholar
  2. 2.
    Wertheim, H.F., H.D. Nghia, W. Taylor, and C. Schultsz. 2009. Streptococcus suis: an emerging human pathogen. Clinical Infectious Diseases 48: 617–62.CrossRefPubMedGoogle Scholar
  3. 3.
    Vanier, G., M. Segura, P. Friedl, S. Lacouture, and M. Gottschalk. 2004. Invasion of porcine brain microvascular endothelial cells by Streptococcus suis serotype 2. Infection and Immunity 72: 1441–1449.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pancholi, V. 2001. Multifunctional alpha-enolase: its role in diseases. Cellular and Molecular Life Sciences 58: 902–920.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang, E., J.M. Brewer, W. Minor, L.A. Carreira, and L. Lebioda. 1997. Mechanism of enolase: the crystal structure of asymmetric dimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at 2.0 A resolution. Biochemistry 36: 12526–12534.CrossRefPubMedGoogle Scholar
  6. 6.
    Piast, M., I. Kustrzeba-Wojcicka, M. Matusiewicz, and T. Banas. 2005. Molecular evolution of enolase. Acta Biochimica Polonica 52: 507–513.PubMedGoogle Scholar
  7. 7.
    Vanier, G., M. Segura, P. Friedl, S. Lacouture, and M. Gottschalk. 2004. Enolase from Streptococcus sobrinus is an immunosuppressive protein. Cellular Microbiology 6: 79–88.CrossRefGoogle Scholar
  8. 8.
    Chhatwal, G.S. 2002. Anchorless adhesins and invasins of Gram-positive bacteria: a new class of virulence factors. Trends in Microbiology 10: 205–208.CrossRefPubMedGoogle Scholar
  9. 9.
    Esgleas, M., Y. Li, M.A. Hancock, J. Harel, J.D. Dubreuil, and M. Gottschalk. 2008. Isolation and characterization of alpha-enolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology 154: 2668–2679.CrossRefPubMedGoogle Scholar
  10. 10.
    Capello, M., S. Ferri-Borgogno, P. Cappello, and F. Novelli. 2011. alpha-Enolase: a promising therapeutic and diagnostic tumor target. The FEBS Journal 278: 1064–1074.CrossRefPubMedGoogle Scholar
  11. 11.
    Chang, G.C., K.J. Liu, C.L. Hsieh, T.S. Hu, S. Charoenfuprasert, H.K. Liu, K.T. Luh, et al. 2006. Introduction of in vitro transcribed ENO1 mRNA into neuroblastoma cells induces cell death. BMC Cancer 5: 161.Google Scholar
  12. 12.
    Feo, S., D. Arcuri, E. Piddini, R. Passantino, and A. Giallongo. 2000. ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Letters 473: 47–52.CrossRefPubMedGoogle Scholar
  13. 13.
    Ghosh, A.K., R. Steele, and R.B. Ray. 2005. c-myc Promoter-binding protein 1 (MBP-1) regulates prostate cancer cell growth by inhibiting MAPK pathway. The Journal of Biological Chemistry 280: 14325–14330.CrossRefPubMedGoogle Scholar
  14. 14.
    Chang, G.C., K.J. Liu, C.L. Hsieh, T.S. Hu, S. Charoenfuprasert, H.K. Liu, K.T. Luh, et al. 2006. Identification of alpha-enolase as an autoantigen in lung cancer: its overexpression is associated with clinical outcomes. Clinical Cancer Research 12: 5746–5754.CrossRefPubMedGoogle Scholar
  15. 15.
    Ucker, D.S., M.R. Jain, G. Pattabiraman, K. Palasiewicz, R.B. Birge, and H. Li. 2012. Externalized glycolytic enzymes are novel, conserved, and early biomarkers of apoptosis. The Journal of Biological Chemistry 287: 10325–10343.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yang, H.B., W.J. Zheng, X. Zhang, and F.L. Tang. 2011. Induction of endothelial cell apoptosis by anti-alpha-enolase antibody. Chinese Medical Sciences Journal 26: 152–157.CrossRefPubMedGoogle Scholar
  17. 17.
    Lopez-Alemany, R., C. Longstaff, S. Hawley, M. Mirshahi, P. Fabregas, M. Jardi, E. Merton, et al. 2003. Inhibition of cell surface mediated plasminogen activation by a monoclonal antibody against alpha-Enolase. American Journal of Hematology 72: 234–242.CrossRefPubMedGoogle Scholar
  18. 18.
    Miles, L.A., C.M. Dahlberg, J. Plescia, J. Felez, K. Kato, and E.F. Plow. 1991. Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry 30: 1682–1691.CrossRefPubMedGoogle Scholar
  19. 19.
    Redlitz, A., B.J. Fowler, E.F. Plow, and L.A. Miles. 1995. The role of an enolase-related molecule in plasminogen binding to cells. European Journal of Biochemistry 227: 407–415.CrossRefPubMedGoogle Scholar
  20. 20.
    Dudani, A.K., C. Cummings, S. Hashemi, and P.R. Ganz. 1993. Isolation of a novel 45 kDa plasminogen receptor from human endothelial cells. Thrombosis Research 69: 185–196.CrossRefPubMedGoogle Scholar
  21. 21.
    Abbott, N.J., L. Ronnback, and E. Hansson. 2006. Astrocyte-endothelial interactions at the blood–brain barrier. Nature Reviews Neuroscience 7: 41–53.CrossRefPubMedGoogle Scholar
  22. 22.
    Dejana, E., M. Corada, and M.G. Lampugnani. 1995. Endothelial cell-to-cell junctions. The FASEB Journal 9: 910–918.PubMedGoogle Scholar
  23. 23.
    Gaillard, P.J., L.H. Voorwinden, J.L. Nielsen, A. Ivanov, R. Atsumi, H. Engman, C. Ringbom, et al. 2001. Establishment and functional characterization of an in vitro model of the blood–brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. European Journal of Pharmaceutical Sciences 12: 215–222.CrossRefPubMedGoogle Scholar
  24. 24.
    Wolburg, H., J. Neuhaus, U. Kniesel, B. Krauss, E.M. Schmid, M. Ocalan, C. Farrell, et al. 1994. Modulation of tight junction structure in blood–brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. Journal of Cell Science 107(Pt 5): 1347–1357.PubMedGoogle Scholar
  25. 25.
    Utepbergenov, D.I., K. Mertsch, A. Sporbert, K. Tenz, M. Paul, R.F. Haseloff, and I.E. Blasig. 1998. Nitric oxide protects blood–brain barrier in vitro from hypoxia/reoxygenation-mediated injury. FEBS Letters 424: 197–201.CrossRefPubMedGoogle Scholar
  26. 26.
    Rubin, L.L., D.E. Hall, S. Porter, K. Barbu, C. Cannon, H.C. Horner, M. Janatpour, et al. 1991. A cell culture model of the blood–brain barrier. The Journal of Cell Biology 115: 1725–1735.CrossRefPubMedGoogle Scholar
  27. 27.
    Hurwitz, A.A., J.W. Berman, W.K. Rashbaum, and W.D. Lyman. 1993. Human fetal astrocytes induce the expression of blood–brain barrier specific proteins by autologous endothelial cells. Brain Research 625: 238–243.CrossRefPubMedGoogle Scholar
  28. 28.
    Megard, I., A. Garrigues, S. Orlowski, S. Jorajuria, P. Clayette, E. Ezan, and A. Mabondzo. 2002. A co-culture-based model of human blood–brain barrier: application to active transport of indinavir and in vivo-in vitro correlation. Brain Research 927: 153–167.CrossRefPubMedGoogle Scholar
  29. 29.
    Epiphanio, S., M.G. Campos, A. Pamplona, D. Carapau, A.C. Pena, R. Ataide, C.A. Monteiro, et al. 2010. VEGF promotes malaria-associated acute lung injury in mice. PLoS Pathogens 6, e1000916.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Scott, P.A., and R. Bicknell. 1993. The isolation and culture of microvascular endothelium. Journal of Cell Science 105(Pt 2): 269–273.PubMedGoogle Scholar
  31. 31.
    DeBault, L.E., and P.A. Cancilla. 1980. Some properties of isolated endothelial cells in culture. Advances in Experimental Medicine and Biology 131: 69–78.CrossRefPubMedGoogle Scholar
  32. 32.
    Walters, E.M., Y. Agca, V. Ganjam, and T. Evans. 2011. Animal models got you puzzled?: think pig. Annals of the New York Academy of Sciences 1245: 63–64.CrossRefPubMedGoogle Scholar
  33. 33.
    Bendixen, E., M. Danielsen, K. Larsen, and C. Bendixen. 2010. Advances in porcine genomics and proteomics—a toolbox for developing the pig as a model organism for molecular biomedical research. Briefings in Functional Genomics 9: 208–219.CrossRefPubMedGoogle Scholar
  34. 34.
    Lunney, J.K. 2007. Advances in swine biomedical model genomics. International Journal of Biological Sciences 3: 179–184.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bernal, D., J.E. de la Rubia, A.M. Carrasco-Abad, R. Toledo, S. Mas-Coma, and A. Marcilla. 2004. Identification of enolase as a plasminogen-binding protein in excretory-secretory products of Fasciola hepatica. FEBS Letters 563: 203–206.CrossRefPubMedGoogle Scholar
  36. 36.
    Sundstrom, P., and G.R. Aliaga. 1992. Molecular cloning of cDNA and analysis of protein secondary structure of Candida albicans enolase, an abundant, immunodominant glycolytic enzyme. Journal of Bacteriology 174: 6789–6799.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Asano, T., K. Ichiki, S. Koizumi, K. Kaizu, T. Hatori, O. Fujino, K. Mashiko, Y. Sakamoto, T. Miyasho, and Y. Fukunaga. 2010. IL-17 is elevated in cerebrospinal fluids in bacterial meningitis in children. Cytokine 51: 101–106.CrossRefPubMedGoogle Scholar
  38. 38.
    Doran, K.S., G.Y. Liu, and V. Nizet. 2003. Group B streptococcal beta-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. The Journal of Clinical Investigation 112: 736–744.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yingying Sun
    • 1
  • Na Li
    • 1
  • Jing Zhang
    • 2
  • Hongtao Liu
    • 1
  • Jianfang Liu
    • 1
  • Xiaojing Xia
    • 1
  • Changjiang Sun
    • 1
  • Xin Feng
    • 1
  • Jingmin Gu
    • 1
  • Chongtao Du
    • 1
  • Wenyu Han
    • 1
  • Liancheng Lei
    • 1
    Email author
  1. 1.College of Veterinary MedicineJilin UniversityChangchunChina
  2. 2.Changchun University of Chinese MedicineChangchunPeople’s Republic of China

Personalised recommendations