Advertisement

Inflammation

, Volume 39, Issue 1, pp 257–268 | Cite as

Role of Suppressor of Cytokine Signaling 3 in the Immune Modulation of Mesenchymal Stromal Cells

  • Chen Yang
  • Chunquan ZhengEmail author
  • Hai Lin
  • Jing Li
  • Keqing Zhao
Article

Abstract

The underlying mechanisms of mesenchymal stromal cells (MSCs) on immune modulation to treat allergic diseases remain unclear. Here, we showed that the suppressor of cytokine signaling 3 (SOCS3) is an important immune modulator expressed by MSCs, which is significantly increased by interferon-γ (IFN-γ). In addition, we observed that SOCS3 is a crucial mediator of the anti-proliferative and functional effects of MSCs on T cells and B cells. The immune modulation of MSCs through SOCS3 is mediated by cell–cell contacts. Moreover, SOCS3 could serve as an indicator to predict the potential immune modulatory of MSCs derived from different donors. Furthermore, treatment with anti-SOCS3 Ab significantly decreased ovalbumin-specific antibodies and neutrophil infiltration in ovalbumin-induced allergic rhinitis (AR) mice. Our results suggest that SOCS3 serves as an immune modulator interfering with T cells and B cells, and SOCS3 may act as a predictive marker for immune modulatory of MSCs.

KEY WORDS

SOCS3 mesenchymal stromal cells immune modulatory interferon-γ 

Notes

Acknowledgments

None.

Funding

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81470672).

Conflicts of Interest

The authors declare no conflicts of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. 1.
    Jiang, Y., B.N. Jahagirdar, R.L. Reinhardt, R.E. Schwartz, C.D. Keene, X.R. Ortiz-Gonzalez, et al. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49.CrossRefPubMedGoogle Scholar
  2. 2.
    Pittenger, M.F., A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang, Y., C. Li, X. Jiang, S. Zhang, Y. Wu, B. Liu, et al. 2004. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Experimental Hematology 32: 657–664.CrossRefPubMedGoogle Scholar
  4. 4.
    Chamberlain, G., J. Fox, B. Ashton, and J. Middleton. 2007. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25: 2739–2749.CrossRefPubMedGoogle Scholar
  5. 5.
    Caplan, A.I. 2007. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology 213: 341–347.CrossRefPubMedGoogle Scholar
  6. 6.
    Fu, Q.L., Y.Y. Chow, S.J. Sun, Q.X. Zeng, H.B. Li, J.B. Shi, et al. 2012. Mesenchymal stem cells derived from human induced pluripotent stem cells modulate T-cell phenotypes in allergic rhinitis. Allergy 67: 1215–1222.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Le Blanc, K., I. Rasmusson, B. Sundberg, C. Gotherstrom, M. Hassan, M. Uzunel, et al. 2004. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363: 1439–1441.CrossRefPubMedGoogle Scholar
  8. 8.
    Ren, G., L. Zhang, X. Zhao, G. Xu, Y. Zhang, A.I. Roberts, et al. 2008. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2: 141–150.CrossRefPubMedGoogle Scholar
  9. 9.
    Yang, C., J. Li, H. Lin, K. Zhao, and C. Zheng. 2015. Nasal mucosa derived-mesenchymal stem cells from mice reduce inflammation via modulating immune responses. PLoS ONE 10: e0118849.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Chen, K., D. Wang, W.T. Du, Z.B. Han, H. Ren, Y. Chi, et al. 2010. Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clinical Immunology 135: 448–458.CrossRefPubMedGoogle Scholar
  11. 11.
    Di Nicola, M., C. Carlo-Stella, M. Magni, M. Milanesi, P.D. Longoni, P. Matteucci, et al. 2002. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99: 3838–3843.CrossRefPubMedGoogle Scholar
  12. 12.
    Meisel, R., A. Zibert, M. Laryea, U. Gobel, W. Daubener, and D. Dilloo. 2004. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103: 4619–4621.CrossRefPubMedGoogle Scholar
  13. 13.
    Ryan, J.M., F. Barry, J.M. Murphy, and B.P. Mahon. 2007. Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clinical and Experimental Immunology 149: 353–363.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Liu, X., X. Qu, Y. Chen, L. Liao, K. Cheng, C. Shao, et al. 2012. Mesenchymal stem/stromal cells induce the generation of novel IL-10-dependent regulatory dendritic cells by SOCS3 activation. Journal of Immunology 189: 1182–1192.CrossRefGoogle Scholar
  15. 15.
    Liu, X., S. Ren, X. Qu, C. Ge, K. Cheng, and R.C. Zhao. 2015. Mesenchymal stem cells inhibit Th17 cells differentiation via IFN-gamma-mediated SOCS3 activation. Immunologic Research 61: 219–229.CrossRefPubMedGoogle Scholar
  16. 16.
    Forbes, G.M., M.J. Sturm, R.W. Leong, M.P. Sparrow, D. Segarajasingam, A.G. Cummins, et al. 2014. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clinical Gastroenterology and Hepatology 12: 64–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Honmou, O., K. Houkin, T. Matsunaga, Y. Niitsu, S. Ishiai, R. Onodera, et al. 2011. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134: 1790–1807.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Le Blanc, K., F. Frassoni, L. Ball, F. Locatelli, H. Roelofs, I. Lewis, et al. 2008. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371: 1579–1586.CrossRefPubMedGoogle Scholar
  19. 19.
    Panfilov, I.A., R. de Jong, S. Takashima, and H.J. Duckers. 2013. Clinical study using adipose-derived mesenchymal-like stem cells in acute myocardial infarction and heart failure. Methods in Molecular Biology 1036: 207–212.CrossRefPubMedGoogle Scholar
  20. 20.
    Rodrigo, S.F., J. van Ramshorst, G.E. Hoogslag, H. Boden, M.A. Velders, S.C. Cannegieter, et al. 2013. Intramyocardial injection of autologous bone marrow-derived ex vivo expanded mesenchymal stem cells in acute myocardial infarction patients is feasible and safe up to 5 years of follow-up. Journal of Cardiovascular Translational Research 6: 816–825.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Quirici, N., C. Scavullo, L. de Girolamo, S. Lopa, E. Arrigoni, G.L. Deliliers, et al. 2010. Anti-L-NGFR and -CD34 monoclonal antibodies identify multipotent mesenchymal stem cells in human adipose tissue. Stem Cells and Development 19: 915–925.CrossRefPubMedGoogle Scholar
  22. 22.
    Arufe, M.C., A. De la Fuente, I. Fuentes, F.J. de Toro, and F.J. Blanco. 2010. Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes. Journal of Cellular Biochemistry 111: 834–845.CrossRefPubMedGoogle Scholar
  23. 23.
    Kurth, T.B., F. Dell’accio, V. Crouch, A. Augello, P.T. Sharpe, and C. De Bari. 2011. Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis and Rheumatism 63: 1289–1300.CrossRefPubMedGoogle Scholar
  24. 24.
    Battula, V.L., P.M. Bareiss, S. Treml, S. Conrad, I. Albert, S. Hojak, et al. 2007. Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 75: 279–291.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang, M., W. Zhang, J. Shang, J. Yang, L. Zhang, and C. Bachert. 2013. Immunomodulatory effects of IL-23 and IL-17 in a mouse model of allergic rhinitis. Clinical and Experimental Allergy 43: 956–966.CrossRefPubMedGoogle Scholar
  26. 26.
    Yoshimura, A., T. Naka, and M. Kubo. 2007. SOCS proteins, cytokine signalling and immune regulation. Nature Reviews Immunology 7: 454–465.CrossRefPubMedGoogle Scholar
  27. 27.
    Boehme, K.W., M. Guerrero, and T. Compton. 2006. Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. Journal of Immunology 177: 7094–7102.CrossRefGoogle Scholar
  28. 28.
    Saldanha-Araujo, F., F.I. Ferreira, P.V. Palma, A.G. Araujo, R.H. Queiroz, D.T. Covas, et al. 2011. Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Research 7: 66–74.CrossRefPubMedGoogle Scholar
  29. 29.
    Bartholomew, A., C. Sturgeon, M. Siatskas, K. Ferrer, K. McIntosh, S. Patil, et al. 2002. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology 30: 42–48.CrossRefPubMedGoogle Scholar
  30. 30.
    Shi, Y., J. Su, A.I. Roberts, P. Shou, A.B. Rabson, and G. Ren. 2012. How mesenchymal stem cells interact with tissue immune responses. Trends in Immunology 33: 136–143.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Tse, W.T., J.D. Pendleton, W.M. Beyer, M.C. Egalka, and E.C. Guinan. 2003. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75: 389–397.CrossRefPubMedGoogle Scholar
  32. 32.
    Ungerer, C., P. Quade-Lyssy, H.H. Radeke, R. Henschler, C. Konigs, U. Kohl, et al. 2014. Galectin-9 is a suppressor of T and B cells and predicts the immune modulatory potential of mesenchymal stromal cell preparations. Stem Cells and Development 23: 755–766.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Mori, H., R. Hanada, T. Hanada, D. Aki, R. Mashima, H. Nishinakamura, et al. 2004. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nature Medicine 10: 739–743.CrossRefPubMedGoogle Scholar
  34. 34.
    Kinjyo, I., H. Inoue, S. Hamano, S. Fukuyama, T. Yoshimura, K. Koga, et al. 2006. Loss of SOCS3 in T helper cells resulted in reduced immune responses and hyperproduction of interleukin 10 and transforming growth factor-beta 1. Journal of Experimental Medicine 203: 1021–1031.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Kubo, M., T. Hanada, and A. Yoshimura. 2003. Suppressors of cytokine signaling and immunity. Nature Immunology 4: 1169–1176.CrossRefPubMedGoogle Scholar
  36. 36.
    Ghannam, S., C. Bouffi, F. Djouad, C. Jorgensen, and D. Noel. 2010. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Research & Therapy 1: 2.CrossRefGoogle Scholar
  37. 37.
    Gieseke, F., B. Schutt, S. Viebahn, E. Koscielniak, W. Friedrich, R. Handgretinger, et al. 2007. Human multipotent mesenchymal stromal cells inhibit proliferation of PBMCs independently of IFNgammaR1 signaling and IDO expression. Blood 110: 2197–2200.CrossRefPubMedGoogle Scholar
  38. 38.
    English, K. 2013. Mechanisms of mesenchymal stromal cell immunomodulation. Immunology and Cell Biology 91: 19–26.CrossRefPubMedGoogle Scholar
  39. 39.
    Ren, G., X. Zhao, L. Zhang, J. Zhang, A. L’Huillier, W. Ling, et al. 2010. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. Journal of Immunology 184: 2321–2328.CrossRefGoogle Scholar
  40. 40.
    Akiyama, K., C. Chen, D. Wang, X. Xu, C. Qu, T. Yamaza, et al. 2012. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10: 544–555.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Augello, A., R. Tasso, S.M. Negrini, A. Amateis, F. Indiveri, R. Cancedda, et al. 2005. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. European Journal of Immunology 35: 1482–1490.CrossRefPubMedGoogle Scholar
  42. 42.
    Li, Y.P., S. Paczesny, E. Lauret, S. Poirault, P. Bordigoni, F. Mekhloufi, et al. 2008. Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. Journal of Immunology 180: 1598–1608.CrossRefGoogle Scholar
  43. 43.
    Zhang, B., R. Liu, D. Shi, X. Liu, Y. Chen, X. Dou, et al. 2009. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood 113: 46–57.CrossRefPubMedGoogle Scholar
  44. 44.
    Corcione, A., F. Benvenuto, E. Ferretti, D. Giunti, V. Cappiello, F. Cazzanti, et al. 2006. Human mesenchymal stem cells modulate B-cell functions. Blood 107: 367–372.CrossRefPubMedGoogle Scholar
  45. 45.
    Rasmusson, I., K. Le Blanc, B. Sundberg, and O. Ringden. 2007. Mesenchymal stem cells stimulate antibody secretion in human B cells. Scandinavian Journal of Immunology 65: 336–343.CrossRefPubMedGoogle Scholar
  46. 46.
    Asari, S., S. Itakura, K. Ferreri, C.P. Liu, Y. Kuroda, F. Kandeel, et al. 2009. Mesenchymal stem cells suppress B-cell terminal differentiation. Experimental Hematology 37: 604–615.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Ren, G., J. Su, L. Zhang, X. Zhao, W. Ling, A. L’Huillie, et al. 2009. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27: 1954–1962.CrossRefPubMedGoogle Scholar
  48. 48.
    Kim, T.H., K. Kim, S.J. Park, S.H. Lee, J.W. Hwang, S.H. Park, et al. 2012. Expression of SOCS1 and SOCS3 is altered in the nasal mucosa of patients with mild and moderate/severe persistent allergic rhinitis. International Archives of Allergy and Immunology 158: 387–396.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chen Yang
    • 1
    • 2
  • Chunquan Zheng
    • 1
    Email author
  • Hai Lin
    • 3
  • Jing Li
    • 4
  • Keqing Zhao
    • 1
  1. 1.Department of Otolaryngology-Head and Neck Surgery, Eye Ear Nose and Throat HospitalFudan UniversityXuhui DistrictChina
  2. 2.Department of Otolaryngology, Ruijin Hospital, School of medicineShanghai Jiao Tong UniversityHuangpu DistrictChina
  3. 3.Department of Otolaryngology, The Sixth People’s Hospital, School of medicineShanghai Jiao tong UniversityXuhui DistrictChina
  4. 4.Department of OtolaryngologyFirst People’s Hospital of Hangzhou CityHangzhouChina

Personalised recommendations