, Volume 38, Issue 6, pp 2224–2234 | Cite as

KPNA2 Contributes to the Inflammatory Processes in Synovial Tissue of Patients with Rheumatoid Arthritis and SW982 Cells

  • Zhongbing Liu
  • Dongmei Zhang
  • Chi Sun
  • Ran Tao
  • Xinbao Xu
  • Libin Xu
  • Hongbing Cheng
  • Min Xiao
  • Youhua WangEmail author


Karyopherin-α2 (KPNA2) functions as an adaptor that transports several proteins to the nucleus. We investigated the function and possible mechanisms of KPNA2 involved in rheumatoid arthritis (RA). Western blotting and immunohistochemistry showed the protein expression of KPNA2 increased in synovial tissue of RA patients compared with the healthy controls. Double immunofluorescent staining indicated that KPNA2 co-localized with T cells, macrophage-like synoviocytes, fibroblast-like synoviocytes, and neutrophils in synovial tissue of RA patients. Moreover, the expression of KPNA2 in SW982 cells was increased in a time-dependent manner in response to TNFα stimulation. Both Western blotting and immunofluorescent staining assay revealed the co-localization of KPNA2 and P65 and their translocation from cytoplasma in TNFα-treated SW982 cells. Furthermore, knocking down the expression of KPNA2 by siRNA inhibited TNFα-induced expression of IL-6, MMP-1, and MMP-13 and, more importantly, decreased the P65 phosphorylation in SW982 cells. We therefore suggested that KPNA2 may play a key role in the inflammation process of RA via NF-κB P65 signal transduction pathway.


karyopherin-α2 (KPNA2) rheumatoid arthritis (RA) SW982 tumor necrosis factor-α (TNFα) P65 



This work was supported by Postgraduate Technology Innovation Project of Nantong University (YKS14004), Clinical Medicine Special Funds of Jiangsu Province (BL2014059), National Basic Research Program of China (973 Program, No. 2012CB822104), National Natural Science Foundation of China (31170766), National Natural Science Foundation of China (81171140), Key Project Natural Science Foundation of Jiangsu University and College (No. 11KJA310002), Nantong City Social Development Projects funds (HS2012032), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    Muller-Ladner, U., T. Pap, R.E. Gay, M. Neidhart, and S. Gay. 2005. Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nature Clinical Practice Rheumatology 1: 102–110.CrossRefPubMedGoogle Scholar
  2. 2.
    Ohtsuji M, Lin Q, Nishikawa K, Ohtsuji N, Okazaki H, Tsurui H, et al. 2014. IL-6 signal blockade ameliorates the enhanced osteoclastogenesis and the associated joint destruction in a novel FcgammaRIIB-deficient rheumatoid arthritis mouse model. Modern rheumatology/the Japan Rheumatism Association 25: 270–277.Google Scholar
  3. 3.
    Lee, J., Y. Kim, H. Yi, S. Diecke, J. Kim, H. Jung, et al. 2014. Generation of disease-specific induced pluripotent stem cells from patients with rheumatoid arthritis and osteoarthritis. Arthritis Research & Therapy 16: R41.CrossRefGoogle Scholar
  4. 4.
    Baier, A., I. Meineckel, S. Gay, and T. Pap. 2003. Apoptosis in rheumatoid arthritis. Current Opinion in Rheumatology 15: 274–279.CrossRefPubMedGoogle Scholar
  5. 5.
    Hah, Y.S., Y.R. Lee, J.S. Jun, H.S. Lim, H.O. Kim, Y.G. Jeong, et al. 2010. A20 suppresses inflammatory responses and bone destruction in human fibroblast-like synoviocytes and in mice with collagen-induced arthritis. Arthritis and Rheumatism 62: 2313–2321.CrossRefPubMedGoogle Scholar
  6. 6.
    Tak, P.P., and G.S. Firestein. 2001. NF-kappaB: a key role in inflammatory diseases. The Journal of Clinical Investigation 107: 7–11.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Schmidt, M., and R.H. Straub. 2015. 11beta-hydroxysteroid dehydrogenase enzymes modulate effects of glucocorticoids in rheumatoid arthritis synovial cells. Neuroimmunomodulation 22: 40–45.CrossRefPubMedGoogle Scholar
  8. 8.
    Ma, S., and X. Zhao. 2014. KPNA2 is a promising biomarker candidate for esophageal squamous cell carcinoma and correlates with cell proliferation. Oncology Reports 32: 1631–1637.PubMedGoogle Scholar
  9. 9.
    Miyamoto, Y., K.L. Loveland, and Y. Yoneda. 2012. Nuclear importin alpha and its physiological importance. Communicative & Integrative Biology 5: 220–222.CrossRefGoogle Scholar
  10. 10.
    Altan, B., T. Yokobori, E. Mochiki, T. Ohno, K. Ogata, A. Ogawa, et al. 2013. Nuclear karyopherin-alpha2 expression in primary lesions and metastatic lymph nodes was associated with poor prognosis and progression in gastric cancer. Carcinogenesis 34: 2314–2321.CrossRefPubMedGoogle Scholar
  11. 11.
    Noetzel, E., M. Rose, J. Bornemann, M. Gajewski, R. Knuchel, and E. Dahl. 2012. Nuclear transport receptor karyopherin-alpha2 promotes malignant breast cancer phenotypes in vitro. Oncogene 31: 2101–2114.CrossRefPubMedGoogle Scholar
  12. 12.
    Yamazaki, T., T. Yokoyama, H. Akatsu, T. Tukiyama, and T. Tokiwa. 2003. Phenotypic characterization of a human synovial sarcoma cell line, SW982, and its response to dexamethasone. In Vitro Cellular & Developmental Biology: Animal 39: 337–339.CrossRefGoogle Scholar
  13. 13.
    Chang, J.H., K.J. Lee, S.K. Kim, D.H. Yoo, and T.Y. Kang. 2014. Validity of SW982 synovial cell line for studying the drugs against rheumatoid arthritis in fluvastatin-induced apoptosis signaling model. The Indian Journal of Medical Research 139: 117–124.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Prevoo, M.L., M.A. van ’t Hof, H.H. Kuper, M.A. van Leeuwen, L.B. van de Putte, and P.L. van Riel. 1995. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis and Rheumatism 38: 44–48.CrossRefPubMedGoogle Scholar
  15. 15.
    Radstake, T.R., M.F. Roelofs, Y.M. Jenniskens, B. Oppers-Walgreen, P.L. van Riel, P. Barrera, et al. 2004. Expression of toll-like receptors 2 and 4 in rheumatoid synovial tissue and regulation by proinflammatory cytokines interleukin-12 and interleukin-18 via interferon-gamma. Arthritis and Rheumatism 50: 3856–3865.CrossRefPubMedGoogle Scholar
  16. 16.
    Tao, T., C. Cheng, Y. Ji, G. Xu, J. Zhang, L. Zhang, et al. 2012. Numbl inhibits glioma cell migration and invasion by suppressing TRAF5-mediated NF-kappaB activation. Molecular Biology of the Cell 23: 2635–2644.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Schmitz, M.L., and P.A. Baeuerle. 1991. The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. The EMBO Journal 10: 3805–3817.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Liang, P., H. Zhang, G. Wang, S. Li, S. Cong, Y. Luo, et al. 2013. KPNB1, XPO7 and IPO8 mediate the translocation of NF-kappaB/p65 into the nucleus. Traffic 14: 1132–1143.PubMedGoogle Scholar
  19. 19.
    Bartok, B., and G.S. Firestein. 2010. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunological Reviews 233: 233–255.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Feldmann, M., and R.N. Maini. 2001. Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annual Review of Immunology 19: 163–196.CrossRefPubMedGoogle Scholar
  21. 21.
    Capellino, S., M. Cosentino, A. Luini, R. Bombelli, T. Lowin, M. Cutolo, F. Marino, and R.H. Straub. 2014. Increased expression of dopamine receptors in synovial fibroblasts from patients with rheumatoid arthritis: inhibitory effects of dopamine on interleukin-8 and interleukin-6. Arthritis and Rheumatology 66: 2685–2693.CrossRefPubMedGoogle Scholar
  22. 22.
    Yamanishi, Y., and G.S. Firestein. 2001. Pathogenesis of rheumatoid arthritis: the role of synoviocytes. Rheumatic Diseases Clinics of North America 27: 355–371.CrossRefPubMedGoogle Scholar
  23. 23.
    Hayden, M.S., and S. Ghosh. 2008. Shared principles in NF-kappaB signaling. Cell 132: 344–362.CrossRefPubMedGoogle Scholar
  24. 24.
    Scheinman, R. 2013. NF-kappaB and rheumatoid arthritis: will understanding genetic risk lead to a therapeutic reward? Forum on Immunopathological Diseases and Therapeutics 4: 93–110.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Chook, Y.M., and G. Blobel. 2001. Karyopherins and nuclear import. Current Opinion in Structural Biology 11: 703–715.CrossRefPubMedGoogle Scholar
  26. 26.
    Davis, L.I. 1995. The nuclear pore complex. Annual Review of Biochemistry 64: 865–896.CrossRefPubMedGoogle Scholar
  27. 27.
    Lange, A., R.E. Mills, C.J. Lange, M. Stewart, S.E. Devine, and A.H. Corbett. 2007. Classical nuclear localization signals: definition, function, and interaction with importin alpha. The Journal of Biological Chemistry 282: 5101–5105.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Fox, D.A. 1997. The role of T cells in the immunopathogenesis of rheumatoid arthritis: new perspectives. Arthritis and Rheumatism 40: 598–609.CrossRefPubMedGoogle Scholar
  29. 29.
    Gorlich, D., and U. Kutay. 1999. Transport between the cell nucleus and the cytoplasm. Annual Review of Cell and Developmental Biology 15: 607–660.CrossRefPubMedGoogle Scholar
  30. 30.
    Pemberton, L.F., and B.M. Paschal. 2005. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6: 187–198.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zhongbing Liu
    • 1
  • Dongmei Zhang
    • 1
    • 2
  • Chi Sun
    • 1
  • Ran Tao
    • 1
  • Xinbao Xu
    • 1
  • Libin Xu
    • 1
  • Hongbing Cheng
    • 3
  • Min Xiao
    • 4
  • Youhua Wang
    • 1
    Email author
  1. 1.Department of Orthopaedics, Affiliated Hospital of Nantong University, and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug TargetNantong UniversityNantongChina
  2. 2.Department of Pathogen Biology, Medical CollegeNantong UniversityNantongChina
  3. 3.Department of OrthopaedicsTraditional Chinese Medical Hospital of Nantong CityNantongChina
  4. 4.National Glycoengineering Research Center and State Key Laboratory of Microbial TechnologyShandong UniversityJinanChina

Personalised recommendations