Advertisement

Inflammation

, Volume 37, Issue 5, pp 1837–1846 | Cite as

Stevioside Plays an Anti-inflammatory Role by Regulating the NF-κB and MAPK Pathways in S. aureus-infected Mouse Mammary Glands

  • Tiancheng Wang
  • Mengyao Guo
  • Xiaojing Song
  • Zecai Zhang
  • Haichao Jiang
  • Wei Wang
  • Yunhe Fu
  • Yongguo Cao
  • Lianqin Zhu
  • Naisheng Zhang
Article

Abstract

Mastitis is an inflammatory disease caused by microbial infection. Staphylococcus aureus is one of the primary bacteria responsible for mastitis. Stevioside is isolated from Stevia rebaudiana and is known to have therapeutic functions. This study was designed to evaluate the effects of stevioside in a mouse model of S. aureus-induced mastitis. In this study, the mouse mammary gland was infected with S. aureus to induce the mastitis model. The stevioside was administered intraperitoneally after the S. aureus infection was established. Hematoxylin–eosin (HE) staining, ELISA, Western blot, and q-PCR methods were used. The results show that stevioside significantly reduced the inflammatory cell infiltration and the levels of TNF-α, IL-1β, and IL-6 and the respective expression of their messenger RNAs (mRNAs). Further studies revealed that stevioside downregulated the TLR2, NF-κB, and (mitogen-activated protein kinase) MAPK signaling pathways in the S. aureus-infected mouse mammary gland. Our results demonstrate that stevioside reduced the expression of TNF-α, IL-1β, and IL-6 by inhibiting the phosphorylation of proteins in the NF-κB and MAPK signaling pathways dose-dependently, but that their mRNA expression was not obviously changed.

KEY WORDS

stevioside TLR2 anti-inflammatory NF-κB MAPK 

Notes

Acknowledgment

This work was supported by a grant from the National Natural Science Foundation of China (Nos. 31272622, 31201925), the Research Fund for the Doctoral Program of Higher Education of China (Nos. 20110061130010, 20120061120098), and Jilin Province Science Foundation for Youths (No. 20130522087JH).

References

  1. 1.
    Sears, P.M., and K.K. McCarthy. 2003. Management and treatment of staphylococcal mastitis. Vet Clin North Am Food Anim Pract 19: 171–185. vii.PubMedCrossRefGoogle Scholar
  2. 2.
    Barlow, J. 2011. Mastitis therapy and antimicrobial susceptibility: a multispecies review with a focus on antibiotic treatment of mastitis in dairy cattle. Journal of Mammary Gland Biology and Neoplasia 16: 383–407.PubMedCrossRefGoogle Scholar
  3. 3.
    Brouillette, E., and F. Malouin. 2005. The pathogenesis and control of Staphylococcus aureus-induced mastitis: study models in the mouse. Microbes and Infection 7: 560–568.PubMedCrossRefGoogle Scholar
  4. 4.
    Myles, I.A., and S.K. Datta. 2012. Staphylococcus aureus: an introduction. In Seminars in immunopathology. Springer; 181–184.Google Scholar
  5. 5.
    Jones, G., Bailey, T., and Roberson J. 1998. Staphylococcus aureus mastitis: cause, detection, and control. Virginia Polytechnic Institute and State University.Google Scholar
  6. 6.
    Green, M., and A. Bradley. 2004. Clinical forum—Staphylococcus aureus mastitis in cattle. Cattle Practice 9: 1–9.Google Scholar
  7. 7.
    Schukken, Y.H., J. Günther, J. Fitzpatrick, M. Fontaine, L. Goetze, O. Holst, J. Leigh, W. Petzl, H.-J. Schuberth, and A. Sipka. 2011. Host-response patterns of intramammary infections in dairy cows. Veterinary Immunology and Immunopathology 144: 270–289.PubMedCrossRefGoogle Scholar
  8. 8.
    Hogeveen, H., K. Huijps, and T.J. Lam. 2011. Economic aspects of mastitis: new developments. New Zealand Veterinary Journal 59: 16–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Chandler, R. 1970. Experimental bacterial mastitis in the mouse. Journal of Medical Microbiology 3: 273–282.PubMedCrossRefGoogle Scholar
  10. 10.
    Guo, M., Zhang. N., Li, D., Liang, D., Liu, Z., Li, F., Fu, Y., Cao, Y., Deng, X., Yang, Z. 2013. Baicalin plays an anti-inflammatory role through reducing nuclear factor-κB and p38 phosphorylation in<i>S. aureus</i>-induced mastitis. International Immunopharmacology.Google Scholar
  11. 11.
    Bannerman, D. 2009. Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. Journal of Animal Science 87: 10–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Gilbert, F.B., P. Cunha, K. Jensen, E.J. Glass, G. Foucras, C. Robert-Granie, R. Rupp, and P. Rainard. 2013. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Veterinary Research 44: 40.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Porcherie, A., P. Cunha, A. Trotereau, P. Roussel, F.B. Gilbert, P. Rainard, and P. Germon. 2012. Repertoire of Escherichia coli agonists sensed by innate immunity receptors of the bovine udder and mammary epithelial cells. Veterinary Research 43: 14.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Brea, D., M. Blanco, P. Ramos-Cabrer, O. Moldes, S. Arias, M. Perez-Mato, R. Leira, T. Sobrino, and J. Castillo. 2011. Toll-like receptors 2 and 4 in ischemic stroke: outcome and therapeutic values. Journal of Cerebral Blood Flow and Metabolism 31: 1424–1431.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Li, Y., X. Sun, Y. Zhang, J. Huang, G. Hanley, K.E. Ferslew, Y. Peng, and D. Yin. 2009. Morphine promotes apoptosis via TLR2, and this is negatively regulated by beta-arrestin 2. Biochemical and Biophysical Research Communications 378: 857–861.PubMedCrossRefGoogle Scholar
  16. 16.
    Whelehan, C.J., K.G. Meade, P.D. Eckersall, F.J. Young, and C. O'Farrelly. 2011. Experimental Staphylococcus aureus infection of the mammary gland induces region-specific changes in innate immune gene expression. Veterinary Immunology and Immunopathology 140: 181–189.PubMedCrossRefGoogle Scholar
  17. 17.
    Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124: 783–801.PubMedCrossRefGoogle Scholar
  18. 18.
    Takeda, K., T. Kaisho, and S. Akira. 2003. Toll-like receptors. Annual Review of Immunology 21: 335–376.PubMedCrossRefGoogle Scholar
  19. 19.
    Baker, R.G., M.S. Hayden, and S. Ghosh. 2011. NF-κB, inflammation, and metabolic disease. Cell Metabolism 13: 11–22.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Kaisho, T.,and S Akira 2000 Critical roles of Toll-like receptors in host defense. Critical Reviews™ in Immunology 20.Google Scholar
  21. 21.
    Notebaert, S., and E. Meyer. 2006. Mouse models to study the pathogenesis and control of bovine mastitis. A review. Veterinary Quarterly 28: 2–13.PubMedCrossRefGoogle Scholar
  22. 22.
    De Vliegher, S., L.K. Fox, S. Piepers, S. McDougall, and H.W. Barkema. 2012. Invited review: Mastitis in dairy heifers: nature of the disease, potential impact, prevention, and control. Journal of Dairy Science 95: 1025–1040.PubMedCrossRefGoogle Scholar
  23. 23.
    Boonkaewwan, C., C. Toskulkao, and M. Vongsakul. 2006. Anti-Inflammatory and immunomodulatory activities of stevioside and its metabolite steviol on THP-1 cells. Journal of Agricultural and Food Chemistry 54: 785–789.PubMedCrossRefGoogle Scholar
  24. 24.
    Boonkaewwan, C, and A Burodom 2013. Anti-inflammatory and immunomodulatory activities of stevioside and steviol on colonic epithelial cells. Journal of the Science of Food and Agriculture.Google Scholar
  25. 25.
    Gregersen, S., P.B. Jeppesen, J.J. Holst, and K. Hermansen. 2004. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 53: 73–76.PubMedCrossRefGoogle Scholar
  26. 26.
    Pariwat, P., S. Homvisasevongsa, C. Muanprasat, and V. Chatsudthipong. 2008. A natural plant-derived dihydroisosteviol prevents cholera toxin-induced intestinal fluid secretion. Journal of Pharmacology and Experimental Therapeutics 324: 798–805.PubMedCrossRefGoogle Scholar
  27. 27.
    Paul, S., S. Sengupta, T.K. Bandyopadhyay, and A. Bhattacharyya. 2012. Stevioside induced ROS-mediated apoptosis through mitochondrial pathway in human breast cancer cell line MCF-7. Nutrition and Cancer 64: 1087–1094.PubMedCrossRefGoogle Scholar
  28. 28.
    Sehar, I., A. Kaul, S. Bani, H.C. Pal, and A.K. Saxena. 2008. Immune up regulatory response of a non-caloric natural sweetener, stevioside. Chemico-Biological Interactions 173: 115–121.PubMedCrossRefGoogle Scholar
  29. 29.
    Ye, F., R. Yang, X. Hua, Q. Shen, W. Zhao, and W. Zhang. 2013. Modification of stevioside using transglucosylation activity of Bacillus amyloliquefaciens α-amylase to reduce its bitter aftertaste. LWT - Food Science and Technology 51: 524–530.CrossRefGoogle Scholar
  30. 30.
    Liu, Y.Z., Y.G. Cao, J.Q. Ye, W.G. Wang, K.J. Song, X.L. Wang, C.H. Wang, R.T. Li, and X.M. Deng. 2010. Immunomodulatory effects of proanthocyanidin A-1 derived in vitro from Rhododendron spiciferum. Fitoterapia 81: 108–114.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhao, X., and P. Lacasse. 2008. Mammary tissue damage during bovine mastitis: causes and control. Journal of Animal Science 86: 57–65.CrossRefGoogle Scholar
  32. 32.
    Halasa, T., K. Huijps, O. Osteras, and H. Hogeveen. 2007. Economic effects of bovine mastitis and mastitis management: a review. Veterinary Quarterly 29: 18–31.PubMedCrossRefGoogle Scholar
  33. 33.
    Tenhagen, B.-A., I. Hansen, A. Reinecke, and W. Heuwieser. 2009. Prevalence of pathogens in milk samples of dairy cows with clinical mastitis and in heifers at first parturition. Journal of Dairy Research 76: 179–187.PubMedCrossRefGoogle Scholar
  34. 34.
    Awney, H.A., M.I. Massoud, and S. El-Maghrabi. 2011. Long-term feeding effects of stevioside sweetener on some toxicological parameters of growing male rats. Journal of Applied Toxicology 31: 431–438.PubMedCrossRefGoogle Scholar
  35. 35.
    Gardana, C., P. Simonetti, E. Canzi, R. Zanchi, and P. Pietta. 2003. Metabolism of stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. Journal of Agricultural and Food Chemistry 51: 6618–6622.PubMedCrossRefGoogle Scholar
  36. 36.
    Anaya-López, J.L., O.E. Contreras-Guzmán, A. Cárabez-Trejo, V.M. Baizabal-Aguirre, J.E. López-Meza, J.J. Valdez-Alarcón, and A. Ochoa-Zarzosa. 2006. Invasive potential of bacterial isolates associated with subclinical bovine mastitis. Research in Veterinary Science 81: 358–361.PubMedCrossRefGoogle Scholar
  37. 37.
    Wesson, C.A., J. Deringer, L.E. Liou, K.W. Bayles, G.A. Bohach, and W.R. Trumble. 2000. Apoptosis induced by Staphylococcus aureus in epithelial cells utilizes a mechanism involving caspases 8 and 3. Infection and Immunity 68: 2998–3001.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wang, G., B. Sun, Y. Gao, Q.H. Meng, and H.C. Jiang. 2007. The effect of emodin-assisted early enteral nutrition on severe acute pancreatitis and secondary hepatic injury. Mediators of Inflammation(2007).Google Scholar
  39. 39.
    Oviedo-Boyso, J., J.J. Valdez-Alarcón, M. Cajero-Juárez, A. Ochoa-Zarzosa, J.E. López-Meza, A. Bravo-Patino, and V.M. Baizabal-Aguirre. 2007. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. Journal of Infection 54: 399–409.PubMedCrossRefGoogle Scholar
  40. 40.
    Naugler, W.E., and M. Karin. 2008. The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends in Molecular Medicine 14: 109–119.PubMedCrossRefGoogle Scholar
  41. 41.
    Mohaptram, D.K., Sai, Reddy. D., Janaki Ramaiah, M., Ghosh, S., Pothula, V., Lunavath, S., Thomas, S., Pushpa Valli, S., Bhadra, M.P., Yadav, J.S. 2014. Rugulactone Derivatives act as inhibitors of NF-kB activation and modulates the transcription of NF-kB dependent genes in MDA-MB-231cells. Bioorganic & Medicinal Chemistry Letters.Google Scholar
  42. 42.
    Brasier, A.R. 2006. The NF-kappaB regulatory network. Cardiovascular Toxicology 6: 111–130.PubMedCrossRefGoogle Scholar
  43. 43.
    Orton, R.J., O.E. Sturm, V. Vyshemirsky, M. Calder, D.R. Gilbert, and W. Kolch. 2005. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochemical Journal 392: 249–261.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Yang, W., H. Zerbe, W. Petzl, R.M. Brunner, J. Gunther, C. Draing, S. von Aulock, H.J. Schuberth, and H.M. Seyfert. 2008. Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder. Molecular Immunology 45: 1385–1397.PubMedCrossRefGoogle Scholar
  45. 45.
    Basset, A., F. Zhang, C. Benes, S. Sayeed, M. Herd, C. Thompson, D.T. Golenbock, A. Camilli, and R. Malley. 2013. Toll-like receptor (TLR) 2 mediates inflammatory responses to oligomerized RrgA pneumococcal pilus type 1 protein. Journal of Biological Chemistry 288: 2665–2675.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Harari, O.A., and J.K. Liao. 2010. NF-kappaB and innate immunity in ischemic stroke. Annals of the New York Academy of Sciences 1207: 32–40.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Yingkun, N., W. Zhenyu, L. Jing, L. Xiuyun, and Y. Huimin. 2013. Stevioside protects LPS-induced acute lung injury in mice. Inflammation 36: 242–250.PubMedCrossRefGoogle Scholar
  48. 48.
    Fengyang, L., F. Yunhe, L. Bo, L. Zhicheng, L. Depeng, L. Dejie, Z. Wen, C. Yongguo, Z. Naisheng, Z. Xichen, and Y. Zhengtao. 2012. Stevioside suppressed inflammatory cytokine secretion by downregulation of NF-kappaB and MAPK signaling pathways in LPS-stimulated RAW264.7 cells. Inflammation 35: 1669–1675.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhao, Y.T., J.H. Guo, Z.L. Wu, Y. Xiong, and W.L. Zhou. 2008. Innate immune responses of epididymal epithelial cells to Staphylococcus aureus infection. Immunology Letters 119: 84–90.PubMedCrossRefGoogle Scholar
  50. 50.
    Boonkaewwan, C., M. Ao, C. Toskulkao, and M.C. Rao. 2008. Specific immunomodulatory and secretory activities of stevioside and steviol in intestinal cells. Journal of Agricultural and Food Chemistry 56: 3777–3784.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tiancheng Wang
    • 1
  • Mengyao Guo
    • 1
  • Xiaojing Song
    • 1
  • Zecai Zhang
    • 1
  • Haichao Jiang
    • 1
  • Wei Wang
    • 1
  • Yunhe Fu
    • 1
  • Yongguo Cao
    • 1
  • Lianqin Zhu
    • 2
  • Naisheng Zhang
    • 1
  1. 1.Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunPeople’s Republic of China
  2. 2.College of Animal Science and TechnologyQingdao Agriculture UniversityQingdaoPeople’s Republic of China

Personalised recommendations