, Volume 37, Issue 5, pp 1468–1475 | Cite as

Paeoniflorin Upregulates β-Defensin-2 Expression in Human Bronchial Epithelial Cell Through the p38 MAPK, ERK, and NF-κB Signaling Pathways

  • Yuying Gan
  • Xuefan CuiEmail author
  • Ting Ma
  • Yanliang Liu
  • Amin Li
  • Mao Huang


Paeoniflorin (PF) is one of the principal components of peony, a plant widely used in traditional Chinese medicine for its anti-inflammatory and immunomodulatory effects. Human β-defensin-2 (hBD-2) is an antimicrobial peptide that acts as the first line of defense against bacterial, viral, and fungal infections. This study aims to determine whether or not PF can regulate the expression of hBD-2 and its possible molecular mechanism in human bronchial epithelial cells (HBECs). Real-time quantitative reverse transcription PCR showed that PF can enhance the mRNA expression level of hBD-2 in a concentration- and time-dependent manner in HBECs. Further studies demonstrated that the mRNA and protein expression levels of hBD-2 were attenuated by the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580, the extracellular signal-regulated kinase (ERK) inhibitor PD98059, and the nuclear factor kappa B (NF-κB) inhibitor (pyrrolidine dithiocarbamate (PDTC)). The phosphorylation of p38 MAPK, ERK, and c-Jun N-terminal kinase was detected by Western blot analysis, and the NF-κB translocation of 16HBECs after PF treatment was analyzed by immunofluorescence. These results support that PF upregulates hBD-2 expression in HBECs through the p38 MAPK, ERK, and NF-κB signaling pathways. These findings provide a new pharmacological mechanism of PF for the treatment of microbial infections by strengthening epithelial antimicrobial barriers.


paeoniflorin human β-defensin-2 p38 MAPK ERK NF-κB 16HBEC 



The authors are grateful to the editor, the associate editor, and reviewer. This research was supported in part by Jiangsu Provincal Special Program of Medical Science (BL2012012).


  1. 1.
    Hiemstra, P.S. 2007. The role of epithelial beta-defensins and cathelicidins in host defense of the lung. Experimental Lung Research 33(10): 537–542.PubMedCrossRefGoogle Scholar
  2. 2.
    Underwood, M., and L. Bakaletz. 2011. Innate immunity and the role of defensins in otitis media. Current Allergy and Asthma Reports 11(6): 499–507.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Yang, D., Z.H. Liu, P. Tewary, Q. Chen, G. de la Rosa, and J.J. Oppenheim. 2007. Defensin participation in innate and adaptive immunity. Current Pharmaceutical Design 13(30): 3131–3139.PubMedCrossRefGoogle Scholar
  4. 4.
    McCormick, T.S., and A. Weinberg. 2000. Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontology 54(1): 195–206.CrossRefGoogle Scholar
  5. 5.
    Niyonsaba, F., K. Iwabuchi, H. Matsuda, H. Ogawa, and I. Nagaoka. 2002. Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. International Immunology 14(4): 421–426.PubMedCrossRefGoogle Scholar
  6. 6.
    Niyonsaba, F., H. Ushio, N. Nakano, W. Ng, K. Sayama, K. Hashimoto, et al. 2007. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. The Journal of Investigative Dermatology 127(3): 594–604.PubMedCrossRefGoogle Scholar
  7. 7.
    Biragyn, A., P.A. Ruffini, C.A. Leifer, E. Klyushnenkova, A. Shakhov, O. Chertov, et al. 2002. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298(5595): 1025–1029.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu, J., X. Du, J. Chen, L. Hu, and L. Chen. 2013. The induction expression of human beta-defensins in gingival epithelial cells and fibroblasts. Archives of Oral Biology 58(10): 1415–1421.PubMedCrossRefGoogle Scholar
  9. 9.
    Lai, Y., A.L. Cogen, K.A. Radek, H.J. Park, D.T. Macleod, A. Leichtle, et al. 2010. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. The Journal of Investigative Dermatology 130(9): 2211–2221.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ju, S.M., A.R. Goh, D.J. Kwon, G.S. Youn, H.J. Kwon, Y.S. Bae, et al. 2012. Extracellular HIV-1 Tat induces human beta-defensin-2 production via NF-kappaB/AP-1 dependent pathways in human B cells. Molecules and Cells 33(4): 335–341.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Gacser, A., Z. Tiszlavicz, T. Nemeth, G. Seprenyi, and Y. Mandi. 2013. Induction of human defensins by intestinal Caco-2 cells after interactions with opportunistic Candida species. Microbes and Infection/Institut Pasteur 16(1): 80–85.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim, Y.J., H.S. Shin, J.H. Lee, Y.W. Jung, H.B. Kim, and U.H. Ha. 2013. Pneumolysin-mediated expression of beta-defensin 2 is coordinated by p38 MAP kinase-MKP1 in human airway cells. Journal of Microbiology 51(2): 194–199.CrossRefGoogle Scholar
  13. 13.
    Li, D., H. Lei, Z. Li, H. Li, Y. Wang, and Y. Lai. 2013. A novel lipopeptide from skin commensal activates TLR2/CD36-p38 MAPK signaling to increase antibacterial defense against bacterial infection. PLoS One 8(3): e58288.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Scharf, S., J. Zahlten, K. Szymanski, S. Hippenstiel, N. Suttorp, and P.D. N’Guessan. 2012. Streptococcus pneumoniae induces human beta-defensin-2 and −3 in human lung epithelium. Experimental Lung Research 38(2): 100–110.PubMedCrossRefGoogle Scholar
  15. 15.
    Hu, Z.Y., L. Xu, R. Yan, Y. Huang, G. Liu, W.X. Zhou, et al. 2013. Advance in studies on effect of paeoniflorin on nervous system. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi. China Journal of Chinese Materia Medica 38(3): 297–301.PubMedGoogle Scholar
  16. 16.
    Zhang, W., and S.M. Dai. 2012. Mechanisms involved in the therapeutic effects of Paeonia lactiflora Pallas in rheumatoid arthritis. International Immunopharmacology 14(1): 27–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Cao, W., W. Zhang, J. Liu, Y. Wang, X. Peng, D. Lu, et al. 2011. Paeoniflorin improves survival in LPS-challenged mice through the suppression of TNF-alpha and IL-1beta release and augmentation of IL-10 production. International Immunopharmacology 11(2): 172–178.PubMedCrossRefGoogle Scholar
  18. 18.
    Jiang, W.L., X.G. Chen, H.B. Zhu, Y.B. Gao, J.W. Tian, and F.H. Fu. 2009. Paeoniflorin inhibits systemic inflammation and improves survival in experimental sepsis. Basic & Clinical Pharmacology & Toxicology 105(1): 64–71.CrossRefGoogle Scholar
  19. 19.
    Zhou, Y., H. Wang, Y.S. Li, Y.W. Tao, J.Y. Zhang, and Z.Q. Zhang. 2010. Paeoniflorin increases beta-defensin expression and attenuates lesion in the colonic mucosa from mice with oxazolone-induced colitis. Yao xue xue bao. Acta Pharmaceutica Sinica 45(1): 37–42.PubMedGoogle Scholar
  20. 20.
    Kao, C.Y., Y. Chen, P. Thai, S. Wachi, F. Huang, C. Kim, et al. 2004. IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. Journal of Immunology 173(5): 3482–3491.CrossRefGoogle Scholar
  21. 21.
    Tecle, T., S. Tripathi, and K.L. Hartshorn. 2010. Review: defensins and cathelicidins in lung immunity. Innate Immunity 16(3): 151–159.PubMedCrossRefGoogle Scholar
  22. 22.
    Chen, H., Z. Xu, L. Peng, X. Fang, X. Yin, N. Xu, et al. 2006. Recent advances in the research and development of human defensins. Peptides 27(4): 931–940.PubMedCrossRefGoogle Scholar
  23. 23.
    Yang, S.H., A.D. Sharrocks, and A.J. Whitmarsh. 2013. MAP kinase signalling cascades and transcriptional regulation. Gene 513(1): 1–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Madi, A., Z. Alnabhani, C. Leneveu, L. Mijouin, M. Feuilloley, and N. Connil. 2013. Pseudomonas fluorescens can induce and divert the human beta-defensin-2 secretion in intestinal epithelial cells to enhance its virulence. Archives of Microbiology 195(3): 189–195.PubMedCrossRefGoogle Scholar
  25. 25.
    Jang, B.C., K.J. Lim, J.H. Paik, Y.K. Kwon, S.W. Shin, S.C. Kim, et al. 2004. Up-regulation of human beta-defensin 2 by interleukin-1beta in A549 cells: involvement of PI3K, PKC, p38 MAPK, JNK, and NF-kappaB. Biochemical and Biophysical Research Communications 320(3): 1026–1033.PubMedCrossRefGoogle Scholar
  26. 26.
    Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140(6): 805–820.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang, C., J. Yuan, H.X. Wu, Y. Chang, Q.T. Wang, Y.J. Wu, et al. 2013. Paeoniflorin inhibits inflammatory responses in mice with allergic contact dermatitis by regulating the balance between inflammatory and anti-inflammatory cytokines. Inflammation Research 62(12): 1035–1044.PubMedCrossRefGoogle Scholar
  28. 28.
    Nam, K.N., C.G. Yae, J.W. Hong, D.H. Cho, J.H. Lee, and E.H. Lee. 2013. Paeoniflorin, a monoterpene glycoside, attenuates lipopolysaccharide-induced neuronal injury and brain microglial inflammatory response. Biotechnology Letters 35(8): 1183–1189.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang, J., W. Dou, E. Zhang, A. Sun, L. Ding, X. Wei, et al. 2013. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway. American Journal of Physiology. Gastrointestinal and Liver Physiology 54(9): 6326–6333.Google Scholar
  30. 30.
    Yan, D., K. Saito, Y. Ohmi, N. Fujie, and K. Ohtsuka. 2004. Paeoniflorin, a novel heat shock protein-inducing compound. Cell Stress & Chaperones 9(4): 378–389.CrossRefGoogle Scholar
  31. 31.
    Asai, M., D. Kawashima, K. Katagiri, R. Takeuchi, G. Tohnai, and K. Ohtsuka. 2011. Protective effect of a molecular chaperone inducer, paeoniflorin, on the HCl- and ethanol-triggered gastric mucosal injury. Life Sciences 88(7–8): 350–357.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yuying Gan
    • 1
  • Xuefan Cui
    • 1
    Email author
  • Ting Ma
    • 1
  • Yanliang Liu
    • 1
  • Amin Li
    • 1
  • Mao Huang
    • 1
  1. 1.Department of Respiratory MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations