Advertisement

Inflammation

, Volume 37, Issue 4, pp 1148–1157 | Cite as

Modulation of LPS-Stimulated Pulmonary Inflammation by Borneol in Murine Acute Lung Injury Model

  • Weiting Zhong
  • Yiwen Cui
  • Qinlei Yu
  • Xianxing Xie
  • Yan Liu
  • Miaomiao Wei
  • Xinxin Ci
  • Liping Peng
Article

Abstract

The object of our study is to investigate the protective effects of Borneol on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. To determine the effects of Borneol on the histopathological changes in mice with ALI, inflammatory cell count in bronchoalveolar lavage fluid (BALF) and lung wet/dry weight ratio were measured in LPS-challenged mice, and lung histopathologic changes observed via paraffin section were assessed. Next, cytokine production induced by LPS in BALF and RAW 264.7 cells was measured by enzyme-linked imunosorbent assay (ELISA). To further study the mechanism of Borneol-protective effects on ALI, nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) pathways were investigated. In the present study, Borneol obviously alleviated pulmonary inflammation by reducing inflammatory infiltration, histopathological changes, descended cytokine production, and pulmonary edema initiated by LPS. Furthermore, Borneol significantly suppressed phosphorylation of NF-κB/P65, IκBa, p38, JNK, and ERK. Taken together, our results suggest that Borneol suppressed inflammatory responses in LPS-induced acute lung injury through inhibition of the NF-κB and MAPKs signaling pathways. Borneol may be a promising potential preventive agent for acute lung injury treatment.

KEY WORDS

borneol LPS inflammation MAPKs NF-κB 

Notes

Acknowledgments

The authors thank the Nature Science Foundation of Jilin province (no. 20101579) and the National High Technology Research and Development Program of China (no. 2011AA10A214) for their great support in financing these researches.

References

  1. 1.
    Yen, Y.T., H.R. Yang, H.C. Lo, Y.C. Hsieh, S.C. Tsai, C.W. Hong, and C.H. Hsieh. 2013. Enhancing autophagy with activated protein C and rapamycin protects against sepsis-induced acute lung injury. Surgery 153(5): 689–698.PubMedCrossRefGoogle Scholar
  2. 2.
    Liu, Z., Z. Yang, Y. Fu, F. Li, D. Liang, E. Zhou, X. Song, W. Zhang, X. Zhang, Y. Cao, and N. Zhang. 2013. Protective effect of gossypol on lipopolysaccharide-induced acute lung injury in mice. Inflammation Research 62(5): 499–506.PubMedCrossRefGoogle Scholar
  3. 3.
    Atabai, K., and M.A. Matthay. 2002. The pulmonary physician in critical care. 5: acute lung injury and the acute respiratory distress syndrome: definitions and epidemiology. Thorax 57(5): 452–458.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Rubenfeld, G.D., E. Caldwell, E. Peabody, J. Weaver, D.P. Martin, M. Neff, E.J. Stern, and L.D. Hudson. 2005. Incidence and outcomes of acute lung injury. New England Journal of Medicine 353: 1685–1693.PubMedCrossRefGoogle Scholar
  5. 5.
    Suda, K., M. Tsuruta, J. Eom, C. Or, T. Mui, J.E. Jaw, et al. 2011. Acute lung injury induces cardiovascular dysfunction: effects of IL-6 and budesonide/formoterol. American Journal of Respiratory Cell and Molecular Biology 45: 510–516.PubMedCrossRefGoogle Scholar
  6. 6.
    Ware, L.B., and M.A. Matthay. 2000. The acute respiratory distress syndrome. New England Journal of Medicine 342: 1334–1349.PubMedCrossRefGoogle Scholar
  7. 7.
    Hemmila, M.R., and L.M. Napolitano. 2006. Severe respiratory failure: advanced treatment options. Critical Care Medicine 34(9 Suppl): S 278–S 290.Google Scholar
  8. 8.
    Steinberg, K.P., L.D. Hudson, R.B. Goodman, et al. 2006. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. New England Journal of Medicine 354: 1671–1684.PubMedCrossRefGoogle Scholar
  9. 9.
    Kawabata, K., T. Hagio, S. Matsumoto, S. Nakao, S. Orita, Y. Aze, and H. Ohno. 2000. Delayed neutrophil elastase inhibition prevents subsequent progression of acute lung injury induced by endotoxin inhalation in hamsters. American Journal of Respiratory and Critical Care Medicine 161(6): 2013–2018.PubMedCrossRefGoogle Scholar
  10. 10.
    Wiedemann, H.P., A.P. Wheeler, Berna rd. GR, National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, et al. 2006. Comparison of two fluid-management strategies in acute lung injury. New England Journal of Medicine 354(2564): 2575.Google Scholar
  11. 11.
    Yang R, Yang L, Shen X, Cheng W, Zhao B, Ali KH, Qian Z, and Ji H (2012) Suppression of NF-κB pathway by crocetin contributes to attenuation of lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol 15;674(2–3):391–6.Google Scholar
  12. 12.
    Silva-Filho, J.C., N.N. Oliveira, D.D. Arcanjo, L.J. Quintans-Júnior, S.C. Cavalcanti, M.R. Santos, R.D. Oliveira, and A.P. Oliveira. 2011. Investigation of mechanisms involved in (−)-Borneol-induced vasorelaxant response on rat thoracic aorta. Basic and Clinical Pharmacology and Toxicology 22: 171–177.Google Scholar
  13. 13.
    Liu, R., L. Zhang, X. Lan, L. Li, T.T. Zhang, J.H. Sun, and G.H. Du. 2011. Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion: Involvement of anti-oxidation and anti-inflammation through nuclear transcription factor kappaB signaling pathway. Neuroscience 10(176): 408–419.CrossRefGoogle Scholar
  14. 14.
    Chen, Y.M., and N.S. Wang. 2004. [Effect of borneol on the intercellular tight junction and pinocytosis vesicles in vitro blood–brain barrier model]. Zhongguo Zhong Xi Yi Jie He Za Zhi 24(7): 632–634.PubMedGoogle Scholar
  15. 15.
    Takaishi, M., K. Uchida, F. Fujita, and M. Tominaga. 2004. Inhibitory effects of monoterpenes on human TRPA1 and the structural basis of their activity. J Physiol Sci 64(1): 47–57.CrossRefGoogle Scholar
  16. 16.
    Xiao, X., M. Yang, D. Sun, and S. Sun. 2012. Curcumin protects against sepsis-induced acute lung injury in rats. Journal of Surgical Research 176(1): e31–e39.PubMedCrossRefGoogle Scholar
  17. 17.
    Hudson, L.D., J.A. Milberg, D. Anardi, and R.J. Maunder. 1995. Clinical risks for development of the acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 151: 293–301.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhu, T., W. Zhang, and D.X. Wang. 2012. Insulin up-regulates epithelial sodium channel in LPS-induced acute lung injury model in rats by SGK1 activation. Injury 43: 1277–1283.PubMedCrossRefGoogle Scholar
  19. 19.
    Deng, J., D.X. Wang, W. Deng, C.Y. Li, J. Tong, and H. Ma. 2012. Regulation of alveolar fluid clearance and ENaC expression in lung by exogenous angiotensin II. Respiratory Physiology & Neurobiology 181(1): 53–61.CrossRefGoogle Scholar
  20. 20.
    Deng, W., C.Y. Li, J. Tong, W. Zhang, and D.X. Wang. 2012. Regulation of ENaC-mediated alveolar fluid clearance by insulin via PI3K/Akt pathway in LPS-induced acute lung injury. Respiratory Research 30(13): 29.CrossRefGoogle Scholar
  21. 21.
    Hidalgo, M.A., A. Romero, J. Figueroa, P. Cortés, I.I. Concha, J.L. Hancke, and R.A. Burgos. 2005. Andrographolide interferes with binding of nuclear factor-k B to DNA in HL-60-derived neutrophilic cells. British Journal of Pharmacology 144(5): 680–686.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Jeon, Y.J., S.H. Han, Y.W. Lee, M. Lee, K.H. Yang, and H.M. Kim. 2000. Dexamethasone inhibits IL-1 beta gene expression in LPS-stimulated RAW 264.7 cells by blocking NF-kappa B/Rel and AP-1 activation. Immunopharmacology 48(2): 173–183.PubMedCrossRefGoogle Scholar
  23. 23.
    Abraham, S.M., T. Lawrence, A. Kleiman, P. Warden, M. Medghalchi, J. Tuckermann, J. Saklatvala, and A.R. Clark. 2006. Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. Journal of Experimental Medicine 203(8): 1883–1889.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Tumurkhuu, G., N. Koide, J. Dagvadorj, A. Morikawa, F. Hassan, S. Islam, Y. Naiki, I. Mori, T. Yoshida, and T. Yokochi. 2008. The mechanism of development of acute lung injury in lethal endotoxic shock using alp ha-galactosylceramide sensitization. Clinical and Experimental Immunology 152(1): 182–191.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Mirzapoiazova, T., I.A. Kolosova, L. Moreno, S. Sammani, J.G. Garcia, and A.D. Verin. 2007. Suppression of endotoxin-induced inflammation by taxol. European Respiratory Journal 30(3): 429–435.PubMedCrossRefGoogle Scholar
  26. 26.
    Windsor, A.C., P.G. Mullen, A.A. Fowler, and H.J. Sugerman. 1993. Role of the neutrophil in adult respiratory distress syndrome. British Journal of Surgery 80(1): 10–17.PubMedCrossRefGoogle Scholar
  27. 27.
    Martin, T.R. 1997. Cytokines and the acute respiratory distress syndrome (ARDS): a question of balance. Nature Medicine 3(3): 272–273.PubMedCrossRefGoogle Scholar
  28. 28.
    Whitley, M.Z., D. Thanos, M.A. Read, T. Maniatis, and T. Collins. 1994. A striking similarity in the organization of the E-selectin and beta interferon gene promoters. Molecular and Cellular Biology 14(10): 6464–6475.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Shu, H.B., A.B. Agranoff, E.G. Nabel, K. Leung, C.S. Duckett, A.S. Neish, T. Collins, and G.J. Nabel. 1993. Differential regulation of vascular cell adhesion molecule 1 gene expression by specific NF-kappa B subunits in endothelial and epithelial cells. Molecular and Cellular Biology 13(10): 6283–6289.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate Immunity. Cell 124(4): 783–801.PubMedCrossRefGoogle Scholar
  31. 31.
    Chow, C.W., M.T. Herrera, T. Suzuki, and G.P. Downey. 2003. Oxidative stress and acute lung injury. American Journal of Respiratory Cell and Molecular Biology 29: 427–431.PubMedCrossRefGoogle Scholar
  32. 32.
    van Furth, R. 1992. Development and distribution of mononuclear phagocytes. In Inflammation basic principles and clinical correlates, 2nd ed, ed. J.I. Gallin, I.M. Goldstein, and R. Snyderman, 325–351. New York: Raven.Google Scholar
  33. 33.
    Tosi, M.F., J.M. Stark, C.W. Smith, A. Hamedani, D.C. Gruenert, and M.D. Infeld. 1992. Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cytokines: effects on neutrophil–epithelial cell adhesion. American Journal of Respiratory Cell and Molecular Biology 7(2): 214–221.PubMedCrossRefGoogle Scholar
  34. 34.
    Bradley, P.P., D.A. Priebat, R.D. Christensen, and G. Rothstein. 1982. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. Journal of Investigative Dermatology 78(3): 206–209.PubMedCrossRefGoogle Scholar
  35. 35.
    Waage, A., P. Brandtzaeg, A. Halstensen, P. Kierulf, and T. Espevik. 1989. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Journal of Experimental Medicine 169(1): 333–338.PubMedCrossRefGoogle Scholar
  36. 36.
    Casey, L.C., R.A. Balk, and R.C. Bone. 1993. Plasma cytokine and endo-toxin levels correlate with survival in patients with sepsis syndrome. Annals of Internal Medicine 119(8): 771–778.PubMedCrossRefGoogle Scholar
  37. 37.
    Tomashefski Jr., J.F. 2000. Pulmonary pathology of acute respiratory distress syndrome. Clinics in Chest Medicine 21(3): 435–466.PubMedCrossRefGoogle Scholar
  38. 38.
    Everhart, M.B., W. Han, T.P. Sherrill, M. Arutiunov, V.V. Polosukhin, J.R. Burke, R.T. Sadikot, J.W. Christman, F.E. Yull, and T.S. Blackwell. 2006. Duration and Intensity of NF-k B activity determine the severity of endotoxin-induced acute lung injury. Journal of Immunology 176(8): 4995–5005.CrossRefGoogle Scholar
  39. 39.
    Moine, P., R. McIntyre, M.D. Schwartz, D. Kaneko, R. Shenkar, Y. Le Tulzo, E.E. Moore, and E. Abraham. 2000. NF-kappaB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome. Shock 13(2): 85–91.PubMedCrossRefGoogle Scholar
  40. 40.
    Liu, S., G. Feng, G.L. Wang, and G.J. Liu. 2008. p38MAPK inhibition attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway. European Journal of Pharmacology 584(1): 159–165.PubMedCrossRefGoogle Scholar
  41. 41.
    Jiang, Y., A. Liu, and L. Zhang. 1999. The role of activation of p38 MAPK induced by LPS in TNF-alpha gene expression. Zhonghua Yi Xue Za Zhi 79(5): 360–364.PubMedGoogle Scholar
  42. 42.
    Cheng, C., Y. Qin, X. Shao, H. Wang, Y. Gao, M. Cheng, and A. Shen. 2007. Induction of TNF-alpha by LPS in Schwann cell is regulated by MAPK activation signals. Cellular and Molecular Neurobiology 27(7): 909–921.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Weiting Zhong
    • 1
    • 2
  • Yiwen Cui
    • 2
  • Qinlei Yu
    • 3
  • Xianxing Xie
    • 2
  • Yan Liu
    • 2
  • Miaomiao Wei
    • 2
  • Xinxin Ci
    • 1
  • Liping Peng
    • 1
  1. 1.Department of Respirationthe First Hospital of Jilin UniversityChangchunPeople’s Republic of China
  2. 2.College of Veterinary MedicineJilin UniversityChangchunPeople’s Republic of China
  3. 3.General Situation of Jilin Provincial Center for Animal Disease Control and PreventionChangchunPeople’s Republic of China

Personalised recommendations