, Volume 38, Issue 3, pp 1181–1190 | Cite as

Natural Killer Cell Functional Activity After 4-1BB Costimulation

  • Shadi sadat Navabi
  • Mehrnoosh Doroudchi
  • Ahmad Hosseini Tashnizi
  • Mojtaba Habibagahi


Reports show enhancement of CD8 T cells’ activity through CD137 (4-1BB) signal; however, not all data proved similar effect in natural killer (NK) cells. Here, the impact of 4-1BB signal on NK cells’ function was assessed during short term cultures. To that end, cytokine-activated NK cells were cocultured with adenovirally transduced MCF-7 stimulator cells expressing 4-1BB ligand. Cellular cytotoxicity, cytokine production, and expression of cytotoxicity related genes were assessed after overnight cultures. Sharp decrease of CD56+ and CD56bright NK cells was demonstrated. 4-1BB neither enhanced cellular degranulation nor improved IFN-γ production although it promoted granzyme B, perforin, and FasL gene expression. 4-1BB signal stimulated higher proportions of CD56bright population to degranulate and express CD107a; however, it could not recover killing activity against K562 targets. Our data could not show major promotion in activity of all NK subpopulations. Due to great heterogeneity of NK cells, more investigation is needed to draw a comprehensive conclusion.


CD137 (4-1BB) CD137 ligand (4-1BBL) costimulation natural killer cell 


  1. 1.
    Inngjerdingen, M., L. Kveberg, C. Naper, and J.T. Vaage. 2011. Natural killer cell subsets in man and rodents. Tissue Antigens 78: 81–88.CrossRefPubMedGoogle Scholar
  2. 2.
    Sun, J.C., S. Lopez-Verges, C.C. Kim, J.L. DeRisi, and L.L. Lanier. 2011. NK cells and immune “memory”. Journal of Immunology 186: 1891–1897.CrossRefGoogle Scholar
  3. 3.
    Bryceson, Y.T., M.E. March, H.G. Ljunggren, and E.O. Long. 2006. Activation, coactivation, and costimulation of resting human natural killer cells. Immunology Reviews 214: 73–91.CrossRefGoogle Scholar
  4. 4.
    Brigl, M., and M.B. Brenner. 2010. How invariant natural killer T cells respond to infection by recognizing microbial or endogenous lipid antigens. Seminars in Immunology 22: 79–86.CrossRefPubMedGoogle Scholar
  5. 5.
    Long, E.O., H.S. Kim, D. Liu, M.E. Peterson, and S. Rajagopalan. 2013. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annual Review of Immunology 31: 227–258.CrossRefPubMedGoogle Scholar
  6. 6.
    Gumbleton, M., and W.G. Kerr. 2013. Role of inositol phospholipid signaling in natural killer cell biology. Frontiers in Immunology 4: 47.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Ortaldo, J.R., and H.A. Young. 2003. Expression of IFN-gamma upon triggering of activating Ly49D NK receptors in vitro and in vivo: costimulation with IL-12 or IL-18 overrides inhibitory receptors. Journal of Immunology 170: 1763–1769.CrossRefGoogle Scholar
  8. 8.
    Watts, T.H. 2010. Staying alive: T cell costimulation, CD28, and Bcl-xL. Journal of Immunology 185: 3785–3787.CrossRefGoogle Scholar
  9. 9.
    Kinnear, G., N.D. Jones, and K.J. Wood. 2013. Costimulation blockade: current perspectives and implications for therapy. Transplantation 95: 527–535.Google Scholar
  10. 10.
    Scandiuzzi, L., K. Ghosh, and X. Zang. 2011. T cell costimulation and coinhibition: genetics and disease. Discovery Medicine 12: 119–128.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Habib-Agahi, M., T.T. Phan, and P.F. Searle. 2007. Co-stimulation with 4-1BB ligand allows extended T-cell proliferation, synergizes with CD80/CD86 and can reactivate anergic T cells. International Immunology 19: 1383–1394.CrossRefPubMedGoogle Scholar
  12. 12.
    Kim, Y.J., M.K. Han, and H.E. Broxmeyer. 2008. 4-1BB regulates NKG2D costimulation in human cord blood CD8+ T cells. Blood 111: 1378–1386.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Kim, Y.J., M.K. Han, and H.E. Broxmeyer. 2008. 4–1BB regulates NKG2D costimulation in human cord blood CD8+ T cells. Blood 111: 1378–1386.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Baessler, T., J.E. Charton, B.J. Schmiedel, F. Grunebach, M. Krusch, A. Wacker, et al. 2010. CD137 ligand mediates opposite effects in human and mouse NK cells and impairs NK-cell reactivity against human acute myeloid leukemia cells. Blood 115: 3058–3069.CrossRefPubMedGoogle Scholar
  15. 15.
    Choi, B.K., Y.H. Kim, C.H. Kim, M.S. Kim, K.H. Kim, H.S. Oh, et al. 2010. Peripheral 4-1BB signaling negatively regulates NK cell development through IFN-gamma. Journal of Immunology 185: 1404–1411.CrossRefGoogle Scholar
  16. 16.
    Buechele, C., T. Baessler, B.J. Schmiedel, C.E. Schumacher, L. Grosse-Hovest, K. Rittig, et al. 2012. 4-1BB ligand modulates direct and Rituximab-induced NK-cell reactivity in chronic lymphocytic leukemia. European Journal of Immunology 42: 737–748.CrossRefPubMedGoogle Scholar
  17. 17.
    Wang, X., D.A. Lee, Y. Wang, L. Wang, Y. Yao, Z. Lin, et al. 2013. Membrane-bound interleukin-21 and CD137 ligand induce functional human natural killer cells from peripheral blood mononuclear cells through STAT-3 activation. Clinical and Experimental Immunology 172: 104–112.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Melero, I., D. Hirschhorn-Cymerman, A. Morales-Kastresana, M.F. Sanmamed, and J.D. Wolchok. 2013. Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clinical Cancer Research 19: 1044–1053.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Houot, R., H. Kohrt, and R. Levy. 2012. Boosting antibody-dependant cellular cytotoxicity against tumor cells with a CD137 stimulatory antibody. Oncoimmunology 1: 957–958.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Wong, M.L., and J.F. Medrano. 2005. Real-time PCR for mRNA quantitation. Biotechniques 39: 75–85.CrossRefPubMedGoogle Scholar
  21. 21.
    Wortzman, M.E., D.L. Clouthier, A.J. McPherson, G.H. Lin, and T.H. Watts. 2013. The contextual role of TNFR family members in CD8(+) T-cell control of viral infections. Immunology Reviews 255: 125–148.CrossRefGoogle Scholar
  22. 22.
    So, T., and M. Croft. 2013. Regulation of PI-3-kinase and Akt signaling in T lymphocytes and other cells by TNFR family molecules. Frontiers in Immunology 4: 139.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Song, D.G., Q. Ye, C. Carpenito, M. Poussin, L.P. Wang, C. Ji, et al. 2011. In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Research 71: 4617–4627.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Dowell, A.C., K.A. Oldham, R.I. Bhatt, S.P. Lee, and P.F. Searle. 2012. Long-term proliferation of functional human NK cells, with conversion of CD56(dim) NK cells to a CD56 (bright) phenotype, induced by carcinoma cells co-expressing 4-1BBL and IL-12. Cancer Immunology, Immunotherapy 61: 615–628.CrossRefPubMedGoogle Scholar
  25. 25.
    St Rose, M.C., R.A. Taylor, S. Bandyopadhyay, H.Z. Qui, A.T. Hagymasi, A.T. Vella, et al. 2013. CD134/CD137 dual costimulation-elicited IFN-gamma maximizes effector T-cell function but limits Treg expansion. Immunology and Cell Biology 91: 173–183.CrossRefPubMedGoogle Scholar
  26. 26.
    Fujisaki, H., H. Kakuda, N. Shimasaki, C. Imai, J. Ma, T. Lockey, et al. 2009. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Research 69: 4010–4017.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Shook, D.R., and D. Campana. 2011. Natural killer cell engineering for cellular therapy of cancer. Tissue Antigens 78: 409–415.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Cho, D., D.R. Shook, N. Shimasaki, Y.H. Chang, H. Fujisaki, and D. Campana. 2010. Cytotoxicity of activated natural killer cells against pediatric solid tumors. Clinical Cancer Research 16: 3901–3909.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Milush, J.M., S. Lopez-Verges, V.A. York, S.G. Deeks, J.N. Martin, F.M. Hecht, et al. 2013. CD56negCD16(+) NK cells are activated mature NK cells with impaired effector function during HIV-1 infection. Retrovirology 10: 158.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Buechele, C., T. Baessler, S. Wirths, J.U. Schmohl, B.J. Schmiedel, and H.R. Salih. 2012. Glucocorticoid-induced TNFR-related protein (GITR) ligand modulates cytokine release and NK cell reactivity in chronic lymphocytic leukemia (CLL). Leukemia 26: 991–1000.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shadi sadat Navabi
    • 1
  • Mehrnoosh Doroudchi
    • 1
  • Ahmad Hosseini Tashnizi
    • 2
  • Mojtaba Habibagahi
    • 1
  1. 1.Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
  2. 2.Institute for Cancer ResearchShiraz University of Medical SciencesShirazIran

Personalised recommendations