Inflammation

, Volume 37, Issue 2, pp 467–477

Saturated Fatty Acids Up-regulate COX-2 Expression in Prostate Epithelial Cells via Toll-like Receptor 4/NF-κB Signaling

  • Jie Liu
  • Shuai Hu
  • Yun Cui
  • Meng-Kui Sun
  • Feng Xie
  • Qian Zhang
  • Jie Jin
Article

Abstract

Cyclooxygenase-2 (COX-2) has been implicated in prostate carcinogenesis, and recently it has been confirmed to be a molecular target of saturated fatty acids (SFAs). In the present study, we investigated the effect of stearic acid (SA) and palmitic acid (PA), two of the most abundant SFAs contained in dietary fat, on COX-2 expression in prostate epithelial cells and the signaling transduction pathway involved. First, we demonstrated that both SA and PA increased the mRNA and protein expression of COX-2, and consistently induced the activation of NF-κB in RWPE-1, BPH-1 and PC-3 prostate epithelial cell lines. The effect of SA and PA on COX-2 over-expression and NF-κB activation was in a dose-dependent manner, and PA was more potent than SA at the same concentration. Then, we demonstrated inhibition of NF-κB using its specific inhibitor strikingly attenuated PA-induced COX-2 expression. Toll-like receptor 4 (TLR4) was revealed to be expressed on RWPE-1, BPH-1 and PC-3 cell lines by PCR and immunofluorescence staining, and blocking its signaling significantly inhibited PA induced COX-2 over-expression and NF-κB activation. Taken together, we demonstrated that SFAs can up-regulate COX-2 expression in prostate epithelial cells, and this effect was mediated mainly through the TLR4/NF-κB signaling pathway.

KEY WORDS

saturated fatty acid prostate COX-2 NF-κB TLR4 

References

  1. 1.
    Siegel, R., D. Naishadham, and A. Jemal. 2013. Cancer statistics, 2013. CA: A Cancer Journal for Clinicians 63: 11–30.Google Scholar
  2. 2.
    Cullen, J., S. Elsamanoudi, S.A. Brassell, Y. Chen, M. Colombo, A. Srivastava, and D.G. McLeod. 2012. The burden of prostate cancer in Asian nations. Journal of Carcinogenesis 11: 7.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Zhang, J., I.B. Dhakal, Z. Zhao, and L. Li. 2012. Trends in mortality from cancers of the breast, colon, prostate, esophagus, and stomach in East Asia: Role of nutrition transition. European Journal of Cancer Prevention 21: 480–489.PubMedCrossRefGoogle Scholar
  4. 4.
    Cook, L.S., M. Goldoft, S.M. Schwartz, and N.S. Weiss. 1999. Incidence of adenocarcinoma of the prostate in Asian immigrants to the United States and their descendants. The Journal of Urology 161: 152–155.PubMedCrossRefGoogle Scholar
  5. 5.
    Shimizu, H., R.K. Ross, L. Bernstein, R. Yatani, B.E. Henderson, and T.M. Mack. 1991. Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. British Journal of Cancer 63: 963–966.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Corella, D., D.K. Arnett, K.L. Tucker, E.K. Kabagambe, M. Tsai, L.D. Parnell, C.Q. Lai, Y.C. Lee, D. Warodomwichit, P.N. Hopkins, and J.M. Ordovas. 2011. A high intake of saturated fatty acids strengthens the association between the fat mass and obesity-associated gene and BMI. The Journal of Nutrition 141: 2219–2225.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Ramon, J.M., R. Bou, S. Romea, M.E. Alkiza, M. Jacas, J. Ribes, and J. Oromi. 2000. Dietary fat intake and prostate cancer risk: A case–control study in Spain. Cancer Causes & Control 11: 679–685.CrossRefGoogle Scholar
  8. 8.
    Kurahashi, N., M. Inoue, M. Iwasaki, S. Sasazuki, and A.S. Tsugane. 2008. Dairy product, saturated fatty acid, and calcium intake and prostate cancer in a prospective cohort of Japanese men. Cancer Epidemiology, Biomarkers & Prevention 17: 930–937.CrossRefGoogle Scholar
  9. 9.
    Lophatananon, A., J. Archer, D. Easton, R. Pocock, D. Dearnaley, M. Guy, Z. Kote-Jarai, L. O’Brien, R.A. Wilkinson, A.L. Hall, E. Sawyer, E. Page, J.F. Liu, S. Barratt, A.A. Rahman, R. Eeles, and K. Muir. 2010. Dietary fat and early-onset prostate cancer risk. The British Journal of Nutrition 103: 1375–1380.PubMedCrossRefGoogle Scholar
  10. 10.
    Pelser, C., A.M. Mondul, A.R. Hollenbeck, and Y. Park. 2013. Dietary fat, fatty acids, and risk of prostate cancer in the NIH-AARP diet and health study. Cancer Epidemiology, Biomarkers & Prevention 22: 697–707.CrossRefGoogle Scholar
  11. 11.
    Kobayashi, N., R.J. Barnard, J. Said, J. Hong-Gonzalez, D.M. Corman, M. Ku, N.B. Doan, D. Gui, D. Elashoff, P. Cohen, and W.J. Aronson. 2008. Effect of low-fat diet on development of prostate cancer and Akt phosphorylation in the Hi-Myc transgenic mouse model. Cancer Research 68: 3066–3073.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Llaverias, G., C. Danilo, Y. Wang, A.K. Witkiewicz, K. Daumer, M.P. Lisanti, and P.G. Frank. 2010. A Western-type diet accelerates tumor progression in an autochthonous mouse model of prostate cancer. The American Journal of Pathology 177: 3180–3191.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Huang, M., S. Narita, K. Numakura, H. Tsuruta, M. Saito, T. Inoue, Y. Horikawa, N. Tsuchiya, and T. Habuchi. 2012. A high-fat diet enhances proliferation of prostate cancer cells and activates MCP-1/CCR2 signaling. Prostate 72: 1779–1788.PubMedCrossRefGoogle Scholar
  14. 14.
    Bonorden, M.J., M.E. Grossmann, S.A. Ewing, O.P. Rogozina, A. Ray, and K.J. TRAMP prostate tumors in relationship to diet and obesity. Prostate Cancer 2012: 543970.Google Scholar
  15. 15.
    Song, M.J., K.H. Kim, J.M. Yoon, and J.B. Kim. 2006. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochemical and Biophysical Research Communications 346: 739–745.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee, J.Y., K.H. Sohn, S.H. Rhee, and D. Hwang. 2001. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. The Journal of Biological Chemistry 276: 16683–16689.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee, J.Y., J. Ye, Z. Gao, H.S. Youn, W.H. Lee, L. Zhao, N. Sizemore, and D.H. Hwang. 2003. Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. The Journal of Biological Chemistry 278: 37041–37051.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang, W., A. Bergh, and J.E. Damber. 2004. Chronic inflammation in benign prostate hyperplasia is associated with focal upregulation of cyclooxygenase-2, Bcl-2, and cell proliferation in the glandular epithelium. Prostate 61: 60–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang, W., A. Bergh, and J.E. Damber. 2005. Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clinical Cancer Research 11: 3250–3256.PubMedCrossRefGoogle Scholar
  20. 20.
    Gupta, S., M. Srivastava, N. Ahmad, D.G. Bostwick, and H. Mukhtar. 2000. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 42: 73–78.PubMedCrossRefGoogle Scholar
  21. 21.
    Kirschenbaum, A., A.P. Klausner, R. Lee, P. Unger, S. Yao, X.H. Liu, and A.C. Levine. 2000. Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology 56: 671–676.PubMedCrossRefGoogle Scholar
  22. 22.
    Yoshimura, R., H. Sano, C. Masuda, M. Kawamura, Y. Tsubouchi, J. Chargui, N. Yoshimura, T. Hla, and S. Wada. 2000. Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 89: 589–596.PubMedCrossRefGoogle Scholar
  23. 23.
    Lee, L.M., C.C. Pan, C.J. Cheng, C.W. Chi, and T.Y. Liu. 2001. Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer Research 21: 1291–1294.PubMedGoogle Scholar
  24. 24.
    Uotila, P., E. Valve, P. Martikainen, M. Nevalainen, M. Nurmi, and P. Harkonen. 2001. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urological Research 29: 23–28.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang, Q., J. Peng, X.H. Zhang, Y.L. Guo, and J. Jin. 2005. Study of effect and mechanism of cyclooxygenase-2 on the prostatic hyperplasia in rats. Chinese Journal of Urology 7: 468–471.Google Scholar
  26. 26.
    Zha, S., W.R. Gage, J. Sauvageot, E.A. Saria, M.J. Putzi, C.M. Ewing, D.A. Faith, W.G. Nelson, A.M. De Marzo, and W.B. Isaacs. 2001. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Research 61: 8617–8623.PubMedGoogle Scholar
  27. 27.
    Khor, L.Y., K. Bae, A. Pollack, M.E. Hammond, D.J. Grignon, V.M. Venkatesan, S.A. Rosenthal, M.A. Ritter, H.M. Sandler, G.E. Hanks, W.U. Shipley, and A.P. Dicker. 2007. COX-2 expression predicts prostate-cancer outcome: Analysis of data from the RTOG 92–02 trial. The Lancet Oncology 8: 912–920.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Cohen, B.L., P. Gomez, Y. Omori, R.C. Duncan, F. Civantos, M.S. Soloway, V.B. Lokeshwar, and B.L. Lokeshwar. 2006. Cyclooxygenase-2 (COX-2) expression is an independent predictor of prostate cancer recurrence. International Journal of Cancer 119: 1082–1087.CrossRefGoogle Scholar
  29. 29.
    Richardsen, E., R.D. Uglehus, J. Due, C. Busch, and L.T. Busund. 2010. COX-2 is overexpressed in primary prostate cancer with metastatic potential and may predict survival. A comparison study between COX-2, TGF-beta, IL-10 and Ki67. Cancer Epidemiology 34: 316–322.PubMedCrossRefGoogle Scholar
  30. 30.
    Bin, W., W. He, Z. Feng, L. Xiangdong, C. Yong, K. Lele, Z. Hongbin, and G. Honglin. 2011. Prognostic relevance of cyclooxygenase-2 (COX-2) expression in Chinese patients with prostate cancer. Acta Histochemica 113: 131–136.PubMedCrossRefGoogle Scholar
  31. 31.
    Kirschenbaum, A., X. Liu, S. Yao, and A.C. Levine. 2001. The role of cyclooxygenase-2 in prostate cancer. Urology 58: 127–131.PubMedCrossRefGoogle Scholar
  32. 32.
    Dandekar, D.S., and B.L. Lokeshwar. 2004. Inhibition of cyclooxygenase (COX)-2 expression by Tet-inducible COX-2 antisense cDNA in hormone-refractory prostate cancer significantly slows tumor growth and improves efficacy of chemotherapeutic drugs. Clinical Cancer Research 10: 8037–8047.PubMedCrossRefGoogle Scholar
  33. 33.
    Katkoori, V., K. Manne, V. Vital-Reyes, C. Rodriguez-Burford, C. Shanmugam, M. Sthanam, U. Manne, C. Chatla, S. Abdulkadir, and W. Grizzle. 2013. Selective COX-2 inhibitor (celecoxib) decreases cellular growth in prostate cancer cell lines independent of p53. Biotechnic & Histochemistry 88: 38–46.CrossRefGoogle Scholar
  34. 34.
    Subbarayan, V., A.L. Sabichi, N. Llansa, S.M. Lippman, and D.G. Menter. 2001. Differential expression of cyclooxygenase-2 and its regulation by tumor necrosis factor-alpha in normal and malignant prostate cells. Cancer Research 61: 2720–2726.PubMedGoogle Scholar
  35. 35.
    Glaser, C., H. Demmelmair, and B. Koletzko. 2010. High-throughput analysis of total plasma fatty acid composition with direct in situ transesterification. PLoS One 5: e12045.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Pandalai, P.K., M.J. Pilat, K. Yamazaki, H. Naik, and K.J. Pienta. 1996. The effects of omega-3 and omega-6 fatty acids on in vitro prostate cancer growth. Anticancer Research 16: 815–820.PubMedGoogle Scholar
  37. 37.
    Bassett, J.K., G. Severi, A.M. Hodge, R.J. Macinnis, R.A. Gibson, J.L. Hopper, D.R. English, and G.G. Giles. 2013. Plasma phospholipid fatty acids, dietary fatty acids and prostate cancer risk. International Journal of Cancer.Google Scholar
  38. 38.
    Tsatsanis, C., A. Androulidaki, M. Venihaki, and A.N. Margioris. 2006. Signalling networks regulating cyclooxygenase-2. The International Journal of Biochemistry & Cell Biology 38: 1654–1661.CrossRefGoogle Scholar
  39. 39.
    Munford, R.S., and C.L. Hall. 1986. Detoxification of bacterial lipopolysaccharides (endotoxins) by a human neutrophil enzyme. Science 234: 203–205.PubMedCrossRefGoogle Scholar
  40. 40.
    Erridge, C., and N.J. Samani. 2009. Saturated fatty acids do not directly stimulate Toll-like receptor signaling. Arteriosclerosis, Thrombosis, and Vascular Biology 29: 1944–1949.PubMedCrossRefGoogle Scholar
  41. 41.
    Shi, H., M.V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, and J.S. Flier. 2006. TLR4 links innate immunity and fatty acid-induced insulin resistance. The Journal of Clinical Investigation 116: 3015–3025.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Weatherill, A.R., J.Y. Lee, L. Zhao, D.G. Lemay, H.S. Youn, and D.H. Hwang. 2005. Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4. Journal of Immunology 174: 5390–5397.Google Scholar
  43. 43.
    Huang, S., J.M. Rutkowsky, R.G. Snodgrass, K.D. Ono-Moore, D.A. Schneider, J.W. Newman, S.H. Adams, and D.H. Hwang. 2012. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. Journal of Lipid Research 53: 2002–2013.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jie Liu
    • 1
  • Shuai Hu
    • 1
  • Yun Cui
    • 1
  • Meng-Kui Sun
    • 1
  • Feng Xie
    • 1
  • Qian Zhang
    • 1
  • Jie Jin
    • 1
  1. 1.Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina

Personalised recommendations