, Volume 36, Issue 4, pp 812–820 | Cite as

Low-dose Interferon-α Treatment Improves Survival and Inflammatory Responses in a Mouse Model of Fulminant Acute Respiratory Distress Syndrome

  • Daisuke Kudo
  • Kazuko Uno
  • Tetsuji Aoyagi
  • Yukiko Akahori
  • Keiko Ishii
  • Emi Kanno
  • Ryoko Maruyama
  • Shigeki Kushimoto
  • Mitsuo Kaku
  • Kazuyoshi KawakamiEmail author


Acute respiratory distress syndrome (ARDS) is accompanied by severe lung inflammation induced by various diseases. Despite the severity of symptoms, therapeutic strategies for this pathologic condition are still poorly developed. Interferon (IFN)-α is well known as an antiviral cytokine and low-dose IFN-α has been reported to show antiinflammatory effects. Therefore, we investigated how this cytokine affected ARDS in a mouse model. C57BL/6 mice received sequential intratracheal administration of α-galactosylceramide (α-GalCer) and lipopolysaccharide (LPS), which resulted in the development of fulminant ARDS. These mice were then treated intranasally with IFN-α and their survival, lung weight, pathological findings, and cytokine production were evaluated. Administration of low-dose IFN-α prolonged survival of fulminant ARDS mice, but higher doses of IFN-α did not. Histological analysis showed that low-dose IFN-α treatment improved findings of diffuse alveolar damage in fulminant ARDS mice, which was associated with reduction in the wet/dry (W/D) lung weight ratio. Furthermore, IFN-γ production in the lungs was significantly reduced in IFN-α-treated mice, compared with control mice, but tumor necrosis factor (TNF)-α production was almost equivalent for both groups. Low-dose IFN-α shows antiinflammatory and therapeutic effects in a mouse model of fulminant ARDS, and reduced production of IFN-γ in the lung may be involved in the beneficial effect of this treatment.


ARDS IFN-α anti-inflammatory effects IFN-γ NKT cells 



This study was supported by a grant from the Ministry of Education, Culture, Sports, Science, and Technology (Grant-in-Aid for Challenging Exploratory Research (23659841)) and a grant from the Ministry of Health, Labor, and Welfare of Japan (Research on Emerging and Re-emerging Infectious Diseases; 22-SHINKOU-IPPAN-014).

Conflict of interest



  1. 1.
    Wheeler, A.P., G.R. Bernard, B.T. Thompson, D. Schoenfeld, H.P. Wiedemann, B. de Boisblanc, A.F. Connors Jr., R.D. Hite, and A.L. Harabin. 2006. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. The New England Journal of Medicine 354: 2213–2224.PubMedCrossRefGoogle Scholar
  2. 2.
    Ware, L.B., and M.A. Matthay. 2000. The acute respiratory distress syndrome. The New England Journal of Medicine 342: 1334–1349.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee, N., D. Hui, A. Wu, P. Chan, P. Cameron, G.M. Joynt, A. Ahuja, M.Y. Yung, C.B. Leung, K.F. To, S.F. Lui, C.C. Szeto, S. Chung, and J.J. Sung. 2003. A major outbreak of severe acute respiratory syndrome in Hong Kong. The New England Journal of Medicine 348: 1986–1994.PubMedCrossRefGoogle Scholar
  4. 4.
    Beigel, J.H., J. Farrar, A.M. Han, F.G. Hayden, R. Hyer, M.D. de Jong, S. Lochindarat, T.K. Nguyen, T.H. Nguyen, T.H. Tran, A. Nicoll, S. Touch, and K.Y. Yuen. 2005. Avian influenza A (H5N1) infection in humans. The New England Journal of Medicine 353: 1374–1385.PubMedCrossRefGoogle Scholar
  5. 5.
    Kawachi, S., S.T. Luong, M. Shigematsu, H. Furuya, T.T. Phung, P.H. Phan, H. Nunoi, L.T. Nguyen, and K. Suzuki. 2009. Risk parameters of fulminant acute respiratory distress syndrome and avian influenza (H5N1) infection in Vietnamese children. Journal of Infectious Diseases 200: 510–515.PubMedCrossRefGoogle Scholar
  6. 6.
    To, K.F., P.K. Chan, K.F. Chan, W.K. Lee, W.Y. Lam, K.F. Wong, N.L. Tang, D.N. Tsang, R.Y. Sung, T.A. Buckley, J.S. Tam, and A.F. Cheng. 2001. Pathology of fatal human infection associated with avian influenza A H5N1 virus. Journal of Medical Virology 63: 242–246.PubMedCrossRefGoogle Scholar
  7. 7.
    Bhatia, M., and S. Moochhala. 2004. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. The Journal of Pathology 202: 145–156.PubMedCrossRefGoogle Scholar
  8. 8.
    Park, W.Y., R.B. Goodman, K.P. Steinberg, J.T. Ruzinski, F. Radella 2nd, D.R. Park, J. Pugin, S.J. Skerrett, L.D. Hudson, and T.R. Martin. 2001. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 164: 1896–1903.PubMedCrossRefGoogle Scholar
  9. 9.
    Shimabukuro, D.W., T. Sawa, and M.A. Gropper. 2003. Injury and repair in lung and airways. Critical Care Medicine 31: S524–S531.PubMedCrossRefGoogle Scholar
  10. 10.
    Bastarache, J.A., and T.S. Blackwell. 2009. Development of animal models for the acute respiratory distress syndrome. Disease Models & Mechanisms 2: 218–223.CrossRefGoogle Scholar
  11. 11.
    Matute-Bello, G., C.W. Frevert, and T.R. Martin. 2008. Animal models of acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 295: L379–L399.PubMedCrossRefGoogle Scholar
  12. 12.
    Aoyagi, T., N. Yamamoto, M. Hatta, D. Tanno, A. Miyazato, K. Ishii, K. Suzuki, T. Nakayama, M. Taniguchi, H. Kunishima, Y. Hirakata, M. Kaku, and K. Kawakami. 2011. Activation of pulmonary invariant NKT cells leads to exacerbation of acute lung injury caused by LPS through local production of IFN-γ and TNF-α by Gr-1+ monocytes. International Immunology 23: 97–108.PubMedCrossRefGoogle Scholar
  13. 13.
    Donnelly, S.C., R.M. Strieter, P.T. Reid, S.L. Kunkel, M.D. Burdick, I. Armstrong, A. Mackenzie, and C. Haslett. 1996. The association between mortality rates and decreased concentrations of interleukin-10 and interleukin-1 receptor antagonist in the lung fluids of patients with the adult respiratory distress syndrome. Annals of Internal Medicine 125: 191–196.PubMedCrossRefGoogle Scholar
  14. 14.
    Peter, J.V., P. John, P.L. Graham, J.L. Moran, I.A. George, and A. Bersten. 2008. Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: meta-analysis. BMJ 336: 1006–1009.PubMedCrossRefGoogle Scholar
  15. 15.
    Tang, B.M., J.C. Craig, G.D. Eslick, I. Seppelt, and A.S. McLean. 2009. Use of corticosteroids in acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. Critical Care Medicine 37: 1594–1603.PubMedCrossRefGoogle Scholar
  16. 16.
    Craig, T.R., M.J. Duffy, M. Shyamsundar, C. McDowell, C.M. O’Kane, J.S. Elborn, and D.F. McAuley. 2011. A randomized clinical trial of hydroxymethylglutaryl-coenzyme a reductase inhibition for acute lung injury (The HARP Study). American Journal of Respiratory and Critical Care Medicine 183: 620–626.PubMedCrossRefGoogle Scholar
  17. 17.
    Bone, R.C., G. Slotman, R. Maunder, H. Silverman, T.M. Hyers, M.D. Kerstein, and J.J. Ursprung. 1989. Randomized double-blind, multicenter study of prostaglandin E1 in patients with the adult respiratory distress syndrome. Prostaglandin E1 Study Group. Chest 96: 114–119.PubMedCrossRefGoogle Scholar
  18. 18.
    Zeiher, B.G., A. Artigas, J.L. Vincent, A. Dmitrienko, K. Jackson, B.T. Thompson, and G. Bernard. 2004. Neutrophil elastase inhibition in acute lung injury: results of the STRIVE study. Critical Care Medicine 32: 1695–1702.PubMedCrossRefGoogle Scholar
  19. 19.
    2000. Ketoconazole for early treatment of acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. The ARDS Network. Journal of the American Medical Association 283:1995–2002.Google Scholar
  20. 20.
    Bernard, G.R., A.P. Wheeler, J.A. Russell, R. Schein, W.R. Summer, K.P. Steinberg, W.J. Fulkerson, P.E. Wright, B.W. Christman, W.D. Dupont, S.B. Higgins, and B.B. Swindell. 1997. The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group. The New England Journal of Medicine 336: 912–918.PubMedCrossRefGoogle Scholar
  21. 21.
    Billiau, A. 2006. Anti-inflammatory properties of type I interferons. Antiviral Research 71: 108–116.PubMedCrossRefGoogle Scholar
  22. 22.
    De Maeyer, E., J. De Maeyer-Guignard, and M. Vandeputte. 1975. Inhibition by interferon of delayed-type hypersensitivity in the mouse. Proceedings of the National Academy of Sciences of the United States of America 72: 1753–1757.PubMedCrossRefGoogle Scholar
  23. 23.
    Abreu, S.L. 1982. Suppression of experimental allergic encephalomyelitis by interferon. Immunological Communications 11: 1–7.PubMedGoogle Scholar
  24. 24.
    Triantaphyllopoulos, K.A., R.O. Williams, H. Tailor, and Y. Chernajovsky. 1999. Amelioration of collagen-induced arthritis and suppression of interferon-gamma, interleukin-12, and tumor necrosis factor alpha production by interferon-beta gene therapy. Arthritis and Rheumatism 42: 90–99.PubMedCrossRefGoogle Scholar
  25. 25.
    Uno, K., S. Shimizu, K. Inaba, M. Kitaura, K. Nakahira, T. Kato, Y. Yamaguchi, and S. Muramatsu. 1988. Effect of recombinant human interferon-alpha A/D on in vivo murine tumor cell growth. Cancer Research 48: 2366–2371.PubMedGoogle Scholar
  26. 26.
    Moore, M., W.J. White, and M.R. Potter. 1980. Modulation of target cell susceptibility to human natural killer cells by interferon. International Journal of Cancer 25: 565–572.CrossRefGoogle Scholar
  27. 27.
    Ransohoff, R.M., C. Devajyothi, M.L. Estes, G. Babcock, R.A. Rudick, E.M. Frohman, and B.P. Barna. 1991. Interferon-beta specifically inhibits interferon-gamma-induced class II major histocompatibility complex gene transcription in a human astrocytoma cell line. Journal of Neuroimmunology 33: 103–112.PubMedCrossRefGoogle Scholar
  28. 28.
    Billiau, A., H. Heremans, F. Vandekerckhove, R. Dijkmans, H. Sobis, E. Meulepas, and H. Carton. 1988. Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. Journal of Immunology 140: 1506–1510.Google Scholar
  29. 29.
    van Holten, J., K. Reedquist, P. Sattonet-Roche, T.J. Smeets, C. Plater-Zyberk, M.J. Vervoordeldonk, and P.P. Tak. 2004. Treatment with recombinant interferon-beta reduces inflammation and slows cartilage destruction in the collagen-induced arthritis model of rheumatoid arthritis. Arthritis Research & Therapy 6: R239–R249.CrossRefGoogle Scholar
  30. 30.
    Weighardt, H., S. Kaiser-Moore, S. Schlautkotter, T. Rossmann-Bloeck, U. Schleicher, C. Bogdan, and B. Holzmann. 2006. Type I IFN modulates host defense and late hyperinflammation in septic peritonitis. Journal of Immunology 177: 5623–5630.Google Scholar
  31. 31.
    Cobelens, P.M., I.A. Tiebosch, R.M. Dijkhuizen, P.H. van der Meide, R. Zwartbol, C.J. Heijnen, J. Kesecioglu, and W.M. van den Bergh. 2010. Interferon-β attenuates lung inflammation following experimental subarachnoid hemorrhage. Critical Care 14: R157.PubMedCrossRefGoogle Scholar
  32. 32.
    Matute-Bello, G., G. Downey, B.B. Moore, et al. 2011. An official American Thoracic Society workshop report: Features and measurements of experimental acute lung injury in animals. American Journal of Respiratory Cell and Molecular Biology 44: 725–738.PubMedCrossRefGoogle Scholar
  33. 33.
    Liem, N.T., N. Nakajima, P. Phat le, Y. Sato, H.N. Thach, P.V. Hung, L.T. San, H. Katano, T. Kumasaka, T. Oka, S. Kawachi, T. Matsushita, T. Sata, K. Kudo, and K. Suzuki. 2008. H5N1-infected cells in lung with diffuse alveolar damage in exudative phase from a fatal case in Vietnam. Japanese Journal of Infectious Diseases 61: 157–160.PubMedGoogle Scholar
  34. 34.
    Haasbach, E., K. Droebner, A.B. Vogel, and O. Planz. 2011. Low-dose interferon type I treatment is effective against H5N1 and swine-origin H1N1 influenza A viruses in vitro and in vivo. Journal of Interferon and Cytokine Research 31: 515–525.PubMedCrossRefGoogle Scholar
  35. 35.
    Beilharz, M.W., J.M. Cummins, and A.L. Bennett. 2007. Protection from lethal influenza virus challenge by oral type 1 interferon. Biochemical and Biophysical Research Communications 355: 740–744.PubMedCrossRefGoogle Scholar
  36. 36.
    Cummins, M.J., A. Papas, G.M. Kammer, and P.C. Fox. 2003. Treatment of primary Sjogren’s syndrome with low-dose human interferon alfa administered by the oromucosal route: combined phase III results. Arthritis and Rheumatism 49: 585–593.PubMedCrossRefGoogle Scholar
  37. 37.
    Ito, A., E. Isogai, K. Yoshioka, K. Sato, N. Himeno, and T. Gotanda. 2010. Ability of orally administered IFN-α4 to inhibit naturally occurring gingival inflammation in dogs. Journal of Veterinary Medical Science 72: 1145–1151.PubMedCrossRefGoogle Scholar
  38. 38.
    Ohya, K., T. Matsumura, N. Itchoda, K. Ohashi, M. Onuma, and C. Sugimoto. 2005. Ability of orally administered IFN-alpha-containing transgenic potato extracts to inhibit Listeria monocytogenes infection. Journal of Interferon and Cytokine Research 25: 459–466.PubMedCrossRefGoogle Scholar
  39. 39.
    Begni, B., M. Amadori, M. Ritelli, and D. Podavini. 2005. Effects of IFN-alpha on the inflammatory response of swine leukocytes to bacterial endotoxin. Journal of Interferon and Cytokine Research 25: 202–208.PubMedCrossRefGoogle Scholar
  40. 40.
    Amadori, M., M. Farinacci, B. Begni, R. Faita, D. Podavini, and M. Colitti. 2009. Effects of interferon-α on the inflammatory response of swine peripheral blood mononuclear cells. Journal of Interferon and Cytokine Research 29: 241–247.PubMedCrossRefGoogle Scholar
  41. 41.
    Straub, O.C. 1995. Studies on the suitability of alpha-hybrid interferon application in cattle. Comparative Immunology, Microbiology and Infectious Diseases 18: 239–243.PubMedCrossRefGoogle Scholar
  42. 42.
    Qin, H., C.A. Wilson, S.J. Lee, and E.N. Benveniste. 2006. IFN-beta-induced SOCS-1 negatively regulates CD40 gene expression in macrophages and microglia. The FASEB Journal 20: 985–987.CrossRefGoogle Scholar
  43. 43.
    Chang, E.Y., B. Guo, S.E. Doyle, and G. Cheng. 2007. Cutting edge: Involvement of the type I IFN production and signaling pathway in lipopolysaccharide-induced IL-10 production. Journal of Immunology 178: 6705–6709.Google Scholar
  44. 44.
    Sauer, I., B. Schaljo, C. Vogl, I. Gattermeier, T. Kolbe, M. Muller, P.J. Blackshear, and P. Kovarik. 2006. Interferons limit inflammatory responses by induction of tristetraprolin. Blood 107: 4790–4797.PubMedCrossRefGoogle Scholar
  45. 45.
    Cooksley, W.G. 2004. The role of interferon therapy in hepatitis B. MedGenMed 6: 16.PubMedGoogle Scholar
  46. 46.
    Pereira, A.A., and I.M. Jacobson. 2009. New and experimental therapies for HCV. Nature Reviews. Gastroenterology & Hepatology 6: 403–411.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daisuke Kudo
    • 1
    • 2
  • Kazuko Uno
    • 3
  • Tetsuji Aoyagi
    • 4
  • Yukiko Akahori
    • 1
  • Keiko Ishii
    • 1
  • Emi Kanno
    • 5
  • Ryoko Maruyama
    • 5
  • Shigeki Kushimoto
    • 2
  • Mitsuo Kaku
    • 4
  • Kazuyoshi Kawakami
    • 1
    Email author
  1. 1.Department of Medical Microbiology, Mycology and ImmunologyTohoku University Graduate School of MedicineSendaiJapan
  2. 2.Department of Emergency MedicineTohoku University Graduate School of MedicineSendaiJapan
  3. 3.Louis Pasteur Center for Medical ResearchKyotoJapan
  4. 4.Department of Infection Control and Laboratory Diagnostics, Internal MedicineTohoku University Graduate School of MedicineSendaiJapan
  5. 5.Department of Science of Nursing PracticeTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations