Advertisement

Inflammation

, Volume 36, Issue 3, pp 529–537 | Cite as

p-Cymene Modulates In Vitro and In Vivo Cytokine Production by Inhibiting MAPK and NF-κB Activation

  • Weiting Zhong
  • Gefu Chi
  • Lanxiang Jiang
  • Lanan Wassy Soromou
  • Na Chen
  • Meixia Huo
  • Weixiao Guo
  • Xuming Deng
  • Haihua Feng
Article

Abstract

The present study was designed to investigate the effects of p-cymene on lipopolysaccharide (LPS)-induced inflammatory cytokine production both in vitro and in vivo. The production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-10 (IL-10) in LPS-stimulated RAW 264.7 cells and C57BL/6 mice was evaluated by sandwich ELISA. Meanwhile, the mRNA levels of cytokine genes were examined in vitro by semiquantitative RT-PCR. In a further study, we analyzed the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways by western blotting. We found that p-cymene significantly regulated TNF-α, IL-1β, and IL-6 production in LPS-stimulated RAW 264.7 cells. Furthermore, the levels of relative mRNAs were also found to be downregulated. In in vivo trail, p-cymene markedly suppressed the production of TNF-α and IL-1β and increased IL-10 secretion. We also found that p-cymene inhibited LPS-induced activation of extracellular signal receptor-activated kinase 1/2, p38, c-Jun N-terminal kinase, and IκBα. These results suggest that p-cymene may have a potential anti-inflammatory action on cytokine production by blocking NF-κB and MAPK signaling pathways.

KEY WORDS

p-cymene inflammation LPS MAPKs NF-κB 

Notes

Acknowledgments

The authors thank the National Nature Science Foundation of China (no. 3097221) and the Chinese postdoctoral station of Jilin University (no. 20090461034) for their great support in financing these researches.

References

  1. 1.
    Bone, R.C., C.J. Grodzin, and R.A. Balk. 1997. Sepsis, a new hypothesis for pathogenesis of the disease process. Chest 112: 235–243.PubMedCrossRefGoogle Scholar
  2. 2.
    Glauser, M.P., D. Heumann, J.D. Baumgartner, and J. Cohen. 1994. Pathogenesis and potential strategies for prevention and treatment of septic shock: An update. Clinical Infectious Diseases 2: 205–216.CrossRefGoogle Scholar
  3. 3.
    Adams, D.O. 1994. Molecular biology of macrophage activation: A pathway whereby psychosocial factors can potentially affect health. Psychosomatic Medicine 56: 316–327.PubMedGoogle Scholar
  4. 4.
    Morrison, D.C., and J.L. Ryan. 1987. Endotoxin and disease mechanisms. Annual Review of Medicine 38: 417–432.PubMedCrossRefGoogle Scholar
  5. 5.
    Porter, K.J., B. Gonipeta, S. Parvataneni, and D. Appledorn. 2010. M. Patial S. Sharma D, et al. Regulation of lipopolysaccharide-induced inflammatory response and endotoxemia by beta-arrestins. Journal of Cellular Physiology 225: 406–416.PubMedCrossRefGoogle Scholar
  6. 6.
    Baeuerle, P.A., and D. Baltimore. 1996. NF-kappa B: Ten years after. Cell 87: 13–20.PubMedCrossRefGoogle Scholar
  7. 7.
    Guha, M., M.A. O'Connell, R. Pawlinski, A. Hollis, P. McGovern, S.F. Yan, et al. 2001. Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98: 1429–1439.PubMedCrossRefGoogle Scholar
  8. 8.
    Hall, A.J., H.L. Vos, and R.M. Bertina. 1999. Lipopolysaccharide induction of tissue factor in THP-1 cells involves Jun protein phosphorylation and nuclear factor kappa B nuclear translocation. Journal of Biological Chemistry 274: 376–383.PubMedCrossRefGoogle Scholar
  9. 9.
    Hambleton, J., S.L. Weinstein, L. Lem, and A.L. DeFranco. 1996. Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proceedings of the National Academy of Sciences of the United States of America 93: 2774–2778.PubMedCrossRefGoogle Scholar
  10. 10.
    Cavalli, J.F., F. Tomi, A.F. Bernardini, and J. Casanova. 2004. Combined analysis of the essential oil of Chenopodium ambrosioides by GC, GC-MS and 13C-NMR spectroscopy: Quantitative determination of ascaridole, a heat-sensitive compound. Phytochemical Analysis 15: 275–279.PubMedCrossRefGoogle Scholar
  11. 11.
    Khokra, S.L., O. Prakash, S. Jain, K.R. Aneja, and Y. Dhingra. 2008. Essential oil composition and antibacterial studies of Vitex negundo Linn. extracts. Indian Journal of Pharmaceutical Sciences 70: 522–526.PubMedCrossRefGoogle Scholar
  12. 12.
    Alma, M.H., A. Mavi, A. Yildirim, M. Digrak, and T. Hirata. 2003. Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum L. growing in Turkey. Biological and Pharmaceutical Bulletin 26: 1725–1729.PubMedCrossRefGoogle Scholar
  13. 13.
    Raza, M., A.A. Alghasham, M.S. Alorainy, and T.M. El-Hadiyah. 2008. Potentiation of valproate-induced anticonvulsant response by Nigella sativa seed constituents: The role of GABA receptors. International Journal of Health Sciences 2: 15–25.PubMedGoogle Scholar
  14. 14.
    Zhang, X., Y. Song, X. Ci, N. An, J. Fan, J. Cui, et al. 2008. Effects of florfenicol on early cytokine responses and survival in murine endotoxemia. International Immunopharmacology 8: 982–988.PubMedCrossRefGoogle Scholar
  15. 15.
    Remick, D.G., R.G. Kunkel, J.K. Larrick, and S.L. Kunkel. 1987. Acute in vivo effects of human recombinant tumor necrosis factor. Laboratory Investigation 56: 583–590.PubMedGoogle Scholar
  16. 16.
    Beutler, B., and A. Cerami. 1988. Tumor necrosis, cachexia, shock, and inflammation: A common mediator. Annual Review of Biochemistry 57: 505–518.PubMedCrossRefGoogle Scholar
  17. 17.
    Dinarello, C.A. 1984. Interleukin-1. Reviews of Infectious Diseases 6: 51–95.PubMedCrossRefGoogle Scholar
  18. 18.
    Hack, C.E., E.R. De Groot, R.J. Felt-Bersma, J.H. Nuijens, R.J. Strack Van Schijndel, A.J. Eerenberg-Belmer, et al. 1989. Increased plasma levels of interleukin-6 in sepsis. Blood 74: 1704–1710.PubMedGoogle Scholar
  19. 19.
    Okusawa, S., J.A. Gelfand, T. Ikejima, R.J. Connolly, and C.A. Dinarello. 1988. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. The Journal of Clinical Investigation 81: 1162–1172.PubMedCrossRefGoogle Scholar
  20. 20.
    Waage, A., A. Halstensen, and T. Espevik. 1987. Association between tumor necrosis factor in serum and fatal outcome in patients with meningococcal disease. Lancet 1: 355–337.PubMedCrossRefGoogle Scholar
  21. 21.
    Nijsten, M.W., E.R. de Groot, H.J. ten Duis, H.J. Klasen, C.E. Hack, and L.A. Aarden. 1987. Serum levels of intenleukin-6 and acute phase responses. Lancet 2: 921.PubMedCrossRefGoogle Scholar
  22. 22.
    Helle, M., J.P. Brakenhoff, E.R. De Groot, and L.A. Aarden. 1988. Interleukin 6 is involved in interleukin-1-induced activities. European Journal of Immunology 18: 957–959.PubMedCrossRefGoogle Scholar
  23. 23.
    Hack, C.E., E.R. De Groot, R.J. Felt-Bersma, and J.H. Nuijens. 1989. Strack Van Schijndel RJ, Eerenberg-Belmer AJ, et al. Increased plasma levels of interleukin-6 in sepsis. Blood 74: 1704–1710.PubMedGoogle Scholar
  24. 24.
    Walley, K.R., N.W. Lukacs, T.J. Standiford, R.M. Strieter, and S.L. Kunkel. 1996. Balance of inflammatory cytokines related to severity and mortality of murine sepsis. Infection and Immunity 64: 4733–4738.PubMedGoogle Scholar
  25. 25.
    de Waal Malefyt, R., J. Abrams, B. Bennett, C.G. Figdor, and J.E. de Vries. 1991. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: An autoregulatory role of IL-10 produced by monocytes. The Journal of Experimental Medicine 174: 1209–1220.PubMedCrossRefGoogle Scholar
  26. 26.
    Fiorentino, D.F., A. Zlotnik, T.R. Mosmann, M. Howard, and A. O'Garra. 1991. IL-10 inhibits cytokine production by activated macrophages. Journal of Immunology 147: 3815–3822.Google Scholar
  27. 27.
    Gerard, C.C., A. Bruyns, D. Marchant, P. Abramowicz, A. Vandenabeele, W. Delvaux, et al. 1993. Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. The Journal of Experimental Medicine 177: 547–550.PubMedCrossRefGoogle Scholar
  28. 28.
    Marchant, A.C., P. Bruyns, M. Vandenabeele, C. Ducarme, A. Gerard, D. Delvaux, et al. 1994. Interleukin-10 controls interferon-gamma and tumor necrosis factor production during experimental endotoxemia. European Journal of Immunology 24: 1167–1171.PubMedCrossRefGoogle Scholar
  29. 29.
    Takeuchi, O., S. Sato, T. Horiuchi, K. Hoshino, K. Takeda, Z. Dong, et al. 2002. Cutting edge: Role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. The Journal of Immunology 169: 10–14.PubMedGoogle Scholar
  30. 30.
    Su, H., N. Bidère, L. Zheng, A. Cubre, K. Sakai, J. Dale, et al. 2005. Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science 307: 1465–1468.PubMedCrossRefGoogle Scholar
  31. 31.
    van der Bruggen, T., S. Nijenhuis, E. van Raaij, J. Verhoef, and B.S. van Asbeck. 1999. Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the Raf-1/MEK1-MEK2/ERK1-ERK2 pathway. Infection and Immunity 67: 3824–3829.PubMedGoogle Scholar
  32. 32.
    Andersson, K., and R. Sundler. 2000. Signaling to translational activation of tumour necrosis factor-alpha expression in human THP-1 cells. Cytokine 12: 1784–1787.PubMedCrossRefGoogle Scholar
  33. 33.
    Xagorari, A., C. Roussos, and A. Papapetropoulos. 2002. Inhibition of LPS-stimulated pathways in macrophages by the flavonoid luteolin. British Journal of Pharmacology 136: 1058–1064.PubMedCrossRefGoogle Scholar
  34. 34.
    Swantek, J.L., M.H. Cobb, and T.D. Geppert. 1997. Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: Glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK. Molecular and Cellular Biology 17: 6274–6282.PubMedGoogle Scholar
  35. 35.
    Carter, A.B., M.M. Monick, and G.W. Hunninghake. 1999. Both Erk and p38 kinases are necessary for cytokine gene transcription. American Journal of Respiratory Cell and Molecular Biology 20: 751–758.PubMedCrossRefGoogle Scholar
  36. 36.
    Ajizian, S.J., B.K. English, and E.A. Meals. 1999. Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-γ. Journal of Infectious Diseases 179: 939–944.PubMedCrossRefGoogle Scholar
  37. 37.
    Mlienhard, S., A. Marcos, and A. Patrick. 1995. Transactivation domain 2 (TA2) of NF-κB p65. The Journal of Biological Chemistry 270: 15576–15584.CrossRefGoogle Scholar
  38. 38.
    Natarajan, M., N. Aravindan, M.L. Meltz, and T.S. Herman. 2002. Post-translational modification of I-kappa B alpha activates NF-kappa B in human monocytes exposed to 56Fe ions. Radiation and Environmental Biophysics 41: 139–44.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Weiting Zhong
    • 1
  • Gefu Chi
    • 2
  • Lanxiang Jiang
    • 3
  • Lanan Wassy Soromou
    • 1
  • Na Chen
    • 1
  • Meixia Huo
    • 1
  • Weixiao Guo
    • 1
  • Xuming Deng
    • 1
  • Haihua Feng
    • 1
  1. 1.College of Animal Science and Veterinary MedicineJilin UniversityChangchunPeople’s Republic of China
  2. 2.College of Animal Science and TechnologyInner Mongolia National UniversityTongliaoPeople’s Republic of China
  3. 3.Department of DermatologySecond Hospital of Jilin UniversityChangchunPeople’s Republic of China

Personalised recommendations