, Volume 36, Issue 2, pp 468–475 | Cite as

Effect of Lipoxin A4 on Myocardial Ischemia Reperfusion Injury Following Cardiac Arrest in a Rabbit Model

  • Zhiqiao Chen
  • Zhe Wu
  • Congxin HuangEmail author
  • Yan ZhaoEmail author
  • Yirong Zhou
  • Xianlong Zhou
  • Xingxing Lu
  • Lele Mao
  • Siying Li


In the present study, we investigated the effect of lipoxin A4 on myocardial ischemia–reperfusion injury (IRI) following cardiac arrest (CA) in a rabbit model. Lipoxin A4 is a metabolite of arachidonic acid in the eicosanoid, it is called “brake signal” for its anti-inflammatory activity. Some inflammatory factors (IL-1β, IL-6, TNF-α, and IL-10), NF-κB p65, infarct ratios, apoptotic index, cardiac troponin I (cTnI), hemodynamic and myocardial structures were measured or observed in different groups. Lipoxin A4 inhibits the expression of IL-1β, IL-6, and TNF-α, the values of the infarct ratios, apoptotic index, the level of serum cTnI and NF-κB p65. Meanwhile, it improves the expression of IL-10, hemodynamic, myocardial structure, and function. These indicate that lipoxin A4 mitigates postresuscitation myocardial IRI in which anti-inflammation and suppression of NF-κB activation may play an important role.


cardiac arrest (CA) cardiopulmonary resuscitation (CPR) ischemia–reperfusion injury (IRI) inflammation lipoxin A4 



All authors would like to thank for Professor Yangan Wang for reviewing the manuscript. We are grateful to the staff of the Emergency Center and Inspection Department of Zhongnan Hospital for their help in sample testing and data acquisition.


  1. 1.
    de Vreede-Swagemakers, J.J.M., A.P.M. Gorgels, W.I. Dubois-Arbouw, J.W. van Ree, M.J.A.P. Daemen, L.G.E. Houben, and H.J.J. Wellens. 1997. Out-of-hospital cardiac arrest in the 1990s: a population-based study in the Maastricht area on incidence, characteristics and survival. Journal of the American College of Cardiology 30(6): 1500–1505.PubMedCrossRefGoogle Scholar
  2. 2.
    Geppert, A., G. Zorn, G.D. Karth, M. Haumer, M. Gwechenberger, J. Koller-Strametz, G. Heinz, K. Huber, and P. Siostrzonek. 2000. Soluble selectins and the systemic inflammatory response syndrome after successful cardiopulmonary resuscitation. Critical Care Medicine 28(7): 2360–2365.PubMedCrossRefGoogle Scholar
  3. 3.
    Adrie, C., M. Adib-Conquy, I. Laurent, M. Monchi, C. Vinsonneau, C. Fitting, F. Fraisse, A.T. Dinh-Xuan, P. Carli, C. Spaulding, J.F. Dhainaut, and J.M. Cavaillon. 2002. Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome. Circulation 106(5): 562–568.PubMedCrossRefGoogle Scholar
  4. 4.
    Nolan, J.P., R.W. Neumar, C. Adrie, M. Aibiki, R.A. Berg, B.W. Bbttiger, C. Callaway, R.S. Clark, R.G. Geocadin, E.C. Jauch, K.B. Kern, I. Laurent, W.T. Longstreth, R.M. Merchant, P. Morley, L.J. Morrison, V. Nadkarni, M.A. Peberdy, E.P. Rivers, A. Rodriguez-Nunez, F.W. Sellke, C. Spaulding, K. Sunde, and H.T. Vanden. 2010. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication: a scientific statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke (Part II). International Emergency Nursing 18(1): 8–28.PubMedCrossRefGoogle Scholar
  5. 5.
    Cook-Mills, J.M., and T.L. Deem. 2005. Active participation of endothelial cells in inflammation. Journal of Leukocyte Biology 77(4): 487–495.PubMedCrossRefGoogle Scholar
  6. 6.
    Boyle, E.J., T.J. Canty, E.N. Morgan, W. Yun, T.H. Pohlman, and E.D. Verrier. 1999. Treating myocardial ischemia–reperfusion injury by targeting endothelial cell transcription. The Annals of Thoracic Surgery 68(5): 1949–1953.PubMedCrossRefGoogle Scholar
  7. 7.
    Serhan, C.N., and E. Oliw. 2001. Unorthodox routes to prostanoid formation: new twists in cyclooxygenase-initiated pathways. Journal Clinical Investigations 107(12): 1481–1489.CrossRefGoogle Scholar
  8. 8.
    Ye, X.H., Y. Wu, P.P. Guo, J. Wang, S.Y. Yuan, Y. Shang, and S.L. Yao. 2010. Lipoxin A4 analogue protects brain and reduces inflammation in a rat model of focal cerebral ischemia reperfusion. Brain Research 1323: 174–183.PubMedCrossRefGoogle Scholar
  9. 9.
    Leonard, M.O., K. Hannan, M.J. Burne, D.W. Lappin, P. Doran, P. Coleman, C. Stenson, C.T. Taylor, F. Daniels, C. Godson, N.A. Petasis, H. Rabb, and H.R. Brady. 2002. 15-Epi-16-(para-fluorophenoxy)-lipoxin A(4)-methyl ester, a synthetic analogue of 15-epi-lipoxin A(4), is protective in experimental ischemic acute renal failure. Journal of the American Society of Nephrology 13(6): 1657–1662.PubMedCrossRefGoogle Scholar
  10. 10.
    Peskar, B.M., K. Ehrlich, R. Schuligoi, and B.A. Peskar. 2009. Role of lipoxygenases and the lipoxin A(4)/annexin 1 receptor in ischemia–reperfusion-induced gastric mucosal damage in rats. Pharmacology 84(5): 294–299.PubMedCrossRefGoogle Scholar
  11. 11.
    Serhan, C.N., A. Jain, S. Marleau, C. Clish, A. Kantarci, B. Behbehani, S.P. Colgan, G.L. Stahl, A. Merched, N.A. Petasis, L. Chan, and T.E. Van Dyke. 2003. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. Journal of Immunology 171(12): 6856–6865.Google Scholar
  12. 12.
    Takano, T., C.B. Clish, K. Gronert, N. Petasis, and C.N. Serhan. 1998. Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues. Journal of Clinical Investigation 101(4): 819–826.PubMedCrossRefGoogle Scholar
  13. 13.
    Takano, T., S. Fiore, J.F. Maddox, H.R. Brady, N.A. Petasis, and C.N. Serhan. 1997. Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. The Journal of Experimental Medicine 185(9): 1693–1704.PubMedCrossRefGoogle Scholar
  14. 14.
    Devchand, P.R., M. Arita, S. Hong, G. Bannenberg, R.L. Moussignac, K. Gronert, and C.N. Serhan. 2003. Human ALX receptor regulates neutrophil recruitment in transgenic mice: roles in inflammation and host defense. The FASEB Journal 17(6): 652–659.CrossRefGoogle Scholar
  15. 15.
    Birnbaum, Y., Y. Ye, Y. Lin, S.Y. Freeberg, S.P. Nishi, J.D. Martinez, M.H. Huang, B.F. Uretsky, and J.R. Perez-Polo. 2006. Augmentation of myocardial production of 15-epi-lipoxin-a4 by pioglitazone and atorvastatin in the rat. Circulation 114(9): 929–935.PubMedCrossRefGoogle Scholar
  16. 16.
    Chen, M.H., L. Xie, T.W. Liu, F.Q. Song, T. He, Z.Y. Zeng, and S.R. Mo. 2007. Epinephrine, but not vasopressin, improves survival rates in an adult rabbit model of asphyxia cardiac arrest. The American Journal of Emergency Medicine 25(5): 509–514.PubMedCrossRefGoogle Scholar
  17. 17.
    Hammel, J.M., C.A. Caldarone, T.L. Van Natta, L.X. Wang, K.F. Welke, W. Li, S. Niles, E. Barner, T.D. Scholz, D.M. Behrendt, and J.L. Segar. 2003. Myocardial apoptosis after cardioplegic arrest in the neonatal lamb. The Journal of Thoracic and Cardiovascular Surgery 125(6): 1268–1275.PubMedCrossRefGoogle Scholar
  18. 18.
    Borutaite, V., and G.C. Brown. 2003. Mitochondria in apoptosis of ischemic heart. FEBS Letters 541(1–3): 1–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Song, F., Y. Shan, F. Cappello, F. Rappa, G. Ristagno, T. Yu, V.G. Li, S. Sun, M.H. Weil, and W. Tang. 2010. Apoptosis is not involved in the mechanism of myocardial dysfunction after resuscitation in a rat model of cardiac arrest and cardiopulmonary resuscitation. Critical Care Medicine 38(5): 1329–1334.PubMedGoogle Scholar
  20. 20.
    Ryan, A., and C. Godson. 2010. Lipoxins: regulators of resolution. Current Opinion in Pharmacology 10(2): 166–172.PubMedCrossRefGoogle Scholar
  21. 21.
    Wu, J., A. Wang, Z. Min, Y. Xiong, Q. Yan, J. Zhang, J. Xu, and S. Zhang. 2011. Lipoxin A4 inhibits the production of proinflammatory cytokines induced by beta-amyloid in vitro and in vivo. Biochemistry Biophysics Research Communication 408(3): 382–387.CrossRefGoogle Scholar
  22. 22.
    Baker, N., S.J. O’Meara, M. Scannell, P. Maderna, and C. Godson. 2009. Lipoxin A4: anti-inflammatory and anti-angiogenic impact on endothelial cells. Journal of Immunology 182(6): 3819–3826.CrossRefGoogle Scholar
  23. 23.
    Turer, A.T., and J.A. Hill. 2010. Pathogenesis of myocardial ischemia–reperfusion injury and rationale for therapy. The American Journal of Cardiology 106(3): 360–368.PubMedCrossRefGoogle Scholar
  24. 24.
    Laurent, I., M. Monchi, J.D. Chiche, L.M. Joly, C. Spaulding, B. Bourgeois, A. Cariou, A. Rozenberg, P. Carli, S. Weber, and J.F. Dhainaut. 2002. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. Journal of the American College of Cardiology 40(12): 2110–2116.PubMedCrossRefGoogle Scholar
  25. 25.
    Ruiz-Bailen, M., D.H.E. Aguayo, S. Ruiz-Navarro, M.A. Diaz-Castellanos, L. Rucabado-Aguilar, F.J. Gomez-Jimenez, S. Martinez-Escobar, R.M. Moreno, and J. Fierro-Roson. 2005. Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation 66(2): 175–181.PubMedCrossRefGoogle Scholar
  26. 26.
    Weerateerangkul, P., S. Chattipakorn, and N. Chattipakorn. 2011. Roles of the nitric oxide signaling pathway in cardiac ischemic preconditioning against myocardial ischemia–reperfusion injury. Medical Science Monitor 17(2): A44–A52.CrossRefGoogle Scholar
  27. 27.
    Vinten-Johansen, J., R. Jiang, J.G. Reeves, J. Mykytenko, J. Deneve, and L.J. Jobe. 2007. Inflammation, proinflammatory mediators and myocardial ischemia–reperfusion Injury. Hematology/Oncology Clinics of North America 21(1): 123–145.PubMedCrossRefGoogle Scholar
  28. 28.
    Moro, C., M.G. Jouan, A. Rakotovao, M.C. Toufektsian, O. Ormezzano, N. Nagy, A. Tosaki, J. de Leiris, and F. Boucher. 2007. Delayed expression of cytokines after reperfused myocardial infarction: possible trigger for cardiac dysfunction and ventricular remodeling. America Journal Physiology Heart Circulatory Physiology 293(5): H3014–H3019.CrossRefGoogle Scholar
  29. 29.
    Baker, R.G., M.S. Hayden, and S. Ghosh. 2011. NF-kappaB, inflammation, and metabolic disease. Cell Metabolism 13(1): 11–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Souza, D.G., C.T. Fagundes, F.A. Amaral, D. Cisalpino, L.P. Sousa, A.T. Vieira, V. Pinho, J.R. Nicoli, L.Q. Vieira, I.M. Fierro, and M.M. Teixeira. 2007. The required role of endogenously produced lipoxin A4 and annexin-1 for the production of IL-10 and inflammatory hyporesponsiveness in mice. Journal of Immunology 179(12): 8533–8543.Google Scholar
  31. 31.
    Jozsef, L., C. Zouki, N.A. Petasis, C.N. Serhan, and J.G. Filep. 2002. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit peroxynitrite formation, NF-kappa B and AP-1 activation, and IL-8 gene expression in human leukocytes. Processing Nationale Academie Science U S A 99(20): 13266–13271.CrossRefGoogle Scholar
  32. 32.
    Yang, J., H. Jiang, J. Yang, J.W. Ding, L.H. Chen, S. Li, and X.D. Zhang. 2009. Valsartan preconditioning protects against myocardial ischemia-reperfusion injury through TLR4/NF-kappaB signaling pathway. Molecular and Cellular Biochemistry 330(1–2): 39–46.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Zhiqiao Chen
    • 1
    • 2
  • Zhe Wu
    • 3
  • Congxin Huang
    • 4
    Email author
  • Yan Zhao
    • 2
    Email author
  • Yirong Zhou
    • 3
  • Xianlong Zhou
    • 3
  • Xingxing Lu
    • 3
  • Lele Mao
    • 3
  • Siying Li
    • 3
  1. 1.Renmin Hospital of Wuhan UniversityWuhanPeople’s Republic of China
  2. 2.Emergency CenterZhongnan Hospital of Wuhan UniversityWuhanPeople’s Republic of China
  3. 3.Medical College of Wuhan UniversityWuhanPeople’s Republic of China
  4. 4.Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations