Advertisement

Inflammation

, Volume 36, Issue 1, pp 197–205 | Cite as

Minocycline Treatment and Bone Marrow Mononuclear Cell Transplantation After Endothelin-1 Induced Striatal Ischemia

  • Marcelo M. Cardoso
  • Edna C. S. Franco
  • Celice C. de Souza
  • Michelle C. da Silva
  • Amauri Gouveia
  • Walace Gomes-LealEmail author
Article

Abstract

We explored whether the modulation of microglia activation with minocycline is beneficial to the therapeutic actions of bone marrow mononuclear cells (BMMCs) transplanted after experimental stroke. Male Wistar adult rats were divided in four experimental groups: ischemic control saline treated (G1, N = 6), ischemic minocycline treated (G2, N = 5), ischemic BMMC treated (G3, N = 5), and ischemic minocycline/BMMC treated (G4, N = 6). There was a significant reduction in the number of ED1+ cells in G3 animals (51.31 ± 2.41, P < 0.05), but this effect was more prominent following concomitant treatment with minocycline (G4 = 29.78 ± 1.56). There was conspicuous neuronal preservation in the brains of G4 animals (87.97 ± 4.27) compared with control group (G1 = 47.61 ± 2.25, P < 0.05). The behavioral tests showed better functional recovery in animals of G2, G3, and G4, compared with G1 and baseline (P < 0.05). The results suggest that a proper modulation of microglia activity may contribute to a more permissive ischemic environment contributing to increased neuroprotection and functional recovery following striatal ischemia.

KEY WORDS

striatum stroke minocycline bone marrow mononuclear cells adult stem cells 

Notes

Acknowledgments

This work was supported by the Brazilian National Council for Scientific and Technological Development (CNPq) and Fundação de Amparo A Pesquisa do Estado do Pará (FAPESPA). W Gomes-Leal is a principal investigator in grant number 573872/2008-2 from the Ministry of Science and Technology (MCT), Ministry of Health (MS), and CNPq (Edital CT-Biotecnologia/MCT/CNPq/MS/SCTIE/DECIT No. 17/2008) and FAPESPA (PRONEX-FAPESPA-CNPQ-Edital 012-2009).

Disclosures/Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Perry, V.H., J.A. Nicoll, and C. Holmes. 2010. Microglia in neurodegenerative disease. Nature Reviews Neurology 6: 193–201.PubMedCrossRefGoogle Scholar
  2. 2.
    Lalancette-Hebert, M., G. Gowing, A. Simard, Y.C. Weng, and J. Kriz. 2007. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. Journal of Neuroscience 27: 2596–2605.PubMedCrossRefGoogle Scholar
  3. 3.
    Neumann, J., S. Sauerzweig, R. Ronicke, F. Gunzer, K. Dinkel, O. Ullrich, et al. 2008. Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. Journal of Neuroscience 28: 5965–5975.PubMedCrossRefGoogle Scholar
  4. 4.
    Thored, P., U. Heldmann, W. Gomes-Leal, R. Gisler, V. Darsalia, J. Taneera, et al. 2009. Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57: 835–849.PubMedCrossRefGoogle Scholar
  5. 5.
    Yrjanheikki, J., T. Tikka, R. Keinanen, G. Goldsteins, P.H. Chan, and J. Koistinaho. 1999. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proceedings of the National Academy of Sciences of the United States of America 96: 13496–13500.PubMedCrossRefGoogle Scholar
  6. 6.
    Hamby, A.M., S.W. Suh, T.M. Kauppinen, and R.A. Swanson. 2007. Use of a poly(ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia-reperfusion. Stroke 38: 632–636.PubMedCrossRefGoogle Scholar
  7. 7.
    Burguillos, M.A., T. Deierborg, E. Kavanagh, A. Persson, N. Hajji, A. Garcia-Quintanilla, et al. 2011. Caspase signalling controls microglia activation and neurotoxicity. Nature 472: 319–324.PubMedCrossRefGoogle Scholar
  8. 8.
    Block, M.L., L. Zecca, and J.S. Hong. 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8: 57–69.PubMedCrossRefGoogle Scholar
  9. 9.
    Lampl, Y., M. Boaz, R. Gilad, M. Lorberboym, R. Dabby, A. Rapoport, et al. 2007. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69: 1404–1410.PubMedCrossRefGoogle Scholar
  10. 10.
    Schabitz, W.R., A. Schneider, and R. Laage. 2008. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 71: 1461. author reply 1461.PubMedCrossRefGoogle Scholar
  11. 11.
    Fagan, S.C., J.L. Waller, F.T. Nichols, D.J. Edwards, L.C. Pettigrew, W.M. Clark, et al. 2010. Minocycline to improve neurologic outcome in stroke (MINOS): a dose-finding study. Stroke 41: 2283–2287.PubMedCrossRefGoogle Scholar
  12. 12.
    Weissman, I.L., D.J. Anderson, and F. Gage. 2001. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annual Review of Cell and Developmental Biology 17: 387–403.PubMedCrossRefGoogle Scholar
  13. 13.
    de Vasconcelos Dos Santos, A., J. da Costa Reis, B. Diaz Paredes, L. Moraes, Jasmin, A. Giraldi-Guimaraes, et al. 2010. Therapeutic window for treatment of cortical ischemia with bone marrow-derived cells in rats. Brain Research 1306: 149–158.PubMedCrossRefGoogle Scholar
  14. 14.
    Iihoshi, S., O. Honmou, K. Houkin, K. Hashi, and J.D. Kocsis. 2004. A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain Research 1007: 1–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Brenneman, M., S. Sharma, M. Harting, R. Strong, C.S. Cox Jr., J. Aronowski, et al. 2010. Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. Journal of Cerebral Blood Flow and Metabolism 30: 140–149.PubMedCrossRefGoogle Scholar
  16. 16.
    Taylor, P.L. 2011. Responsibility rewarded: ethics, engagement, and scientific autonomy in the labyrinth of the minotaur. Neuron 70: 577–581.PubMedCrossRefGoogle Scholar
  17. 17.
    Ideguchi, M., M. Shinoyama, M. Gomi, H. Hayashi, N. Hashimoto, and J. Takahashi. 2008. Immune or inflammatory response by the host brain suppresses neuronal differentiation of transplanted ES cell-derived neural precursor cells. Journal of Neuroscience Research 86: 1936–1943.PubMedCrossRefGoogle Scholar
  18. 18.
    Buja, L.M., and D. Vela. 2010. Immunologic and inflammatory reactions to exogenous stem cells implications for experimental studies and clinical trials for myocardial repair. Journal of the American College of Cardiology 56: 1693–1700.PubMedCrossRefGoogle Scholar
  19. 19.
    Rota Nodari, L., D. Ferrari, F. Giani, M. Bossi, V. Rodriguez-Menendez, G. Tredici, et al. 2010. Long-term survival of human neural stem cells in the ischemic rat brain upon transient immunosuppression. PLoS One 5. e14035.Google Scholar
  20. 20.
    Keimpema, E., M.R. Fokkens, Z. Nagy, V. Agoston, P.G. Luiten, C. Nyakas, et al. 2009. Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathology and Applied Neurobiology 35: 89–102.PubMedCrossRefGoogle Scholar
  21. 21.
    Michel-Monigadon, D., V. Nerriere-Daguin, X. Leveque, M. Plat, E. Venturi, P. Brachet, et al. 2010. Minocycline promotes long-term survival of neuronal transplant in the brain by inhibiting late microglial activation and T-cell recruitment. Transplantation 89: 816–823.PubMedCrossRefGoogle Scholar
  22. 22.
    Morioka, T., A.N. Kalehua, and W.J. Streit. 1993. Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. The Journal of Comparative Neurology 327: 123–132.PubMedCrossRefGoogle Scholar
  23. 23.
    Souza-Rodrigues, R.D., R.R. Lima, J. Guimaraes-Silva, A.M. Costa, C.D. Dos Santos, C.W. Picanço-Diniz, et al. 2008. Inflammatory response and white matter damage after microinjections of endothelin-1 into the rat striatum. Brain Research 1200C: 78–88.CrossRefGoogle Scholar
  24. 24.
    Dos Santos, C.D., C.W. Picanço-Diniz, and W. Gomes-Leal. 2007. Differential patterns of inflammatory response, axonal damage and myelin impairment following excitotoxic or ischemic damage to the trigeminal spinal nucleus of adult rats. Brain Research 1172: 130–144.PubMedCrossRefGoogle Scholar
  25. 25.
    Paxinos, G., C.R. Watson, and P.C. Emson. 1980. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. Journal of Neuroscience Methods 3: 129–149.PubMedCrossRefGoogle Scholar
  26. 26.
    Stirling, D.P., K. Khodarahmi, J. Liu, L.T. McPhail, C.B. McBride, J.D. Steeves, et al. 2004. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. Journal of Neuroscience 24: 2182–2190.PubMedCrossRefGoogle Scholar
  27. 27.
    Ekdahl, C.T., J.H. Claasen, S. Bonde, Z. Kokaia, and O. Lindvall. 2003. Inflammation is detrimental for neurogenesis in adult brain. Proceedings of the National Academy of Sciences of the United States of America 100: 13632–13637.PubMedCrossRefGoogle Scholar
  28. 28.
    Giraldi-Guimaraes, A., M. Rezende-Lima, F.P. Bruno, and R. Mendez-Otero. 2009. Treatment with bone marrow mononuclear cells induces functional recovery and decreases neurodegeneration after sensorimotor cortical ischemia in rats. Brain Research 9: 108–120.CrossRefGoogle Scholar
  29. 29.
    Franco, E.C., M.M. Cardoso, A. Gouvêia, A. Pereira, and W. Gomes-Leal. 2012. Modulation of microglial activation enhances neuroprotection and functional recovery derived from bone marrow mononuclear cell transplantation after cortical ischemia. Neuroscience Research 73: 122–132.PubMedCrossRefGoogle Scholar
  30. 30.
    Sughrue, M.E., J. Mocco, R.J. Komotar, A. Mehra, A.L. D’Ambrosio, B.T. Grobelny, et al. 2006. An improved test of neurological dysfunction following transient focal cerebral ischemia in rats. Journal of Neuroscience Methods 151: 83–89.PubMedCrossRefGoogle Scholar
  31. 31.
    Mullen, R.J., C.R. Buck, and A.M. Smith. 1992. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116: 201–211.PubMedGoogle Scholar
  32. 32.
    Dijkstra, C.D., E.A. Dopp, P. Joling, and G. Kraal. 1985. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in rat recognized by monoclonal antibodies ED1, ED2 and ED3. Advances in Experimental Medicine and Biology 186: 409–419.PubMedGoogle Scholar
  33. 33.
    Gomes-Leal, W., D.J. Corkill, M.A. Freire, C.W. Picanco-Diniz, and V.H. Perry. 2004. Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury. Experimental Neurology 190: 456–467.PubMedCrossRefGoogle Scholar
  34. 34.
    Bao, X., J. Wei, M. Feng, S. Lu, G. Li, W. Dou, et al. 2011. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Research 1367: 103–113.PubMedCrossRefGoogle Scholar
  35. 35.
    Parr, A.M., I. Kulbatski, T. Zahir, X. Wang, C. Yue, A. Keating, et al. 2008. Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 155: 760–770.PubMedCrossRefGoogle Scholar
  36. 36.
    Zurita, M., and J. Vaquero. 2006. Bone marrow stromal cells can achieve cure of chronic paraplegic rats: functional and morphological outcome one year after transplantation. Neuroscience Letters 402: 51–56.PubMedCrossRefGoogle Scholar
  37. 37.
    Chopp, M., Y. Li, and Z.G. Zhang. 2009. Mechanisms underlying improved recovery of neurological function after stroke in the rodent after treatment with neurorestorative cell-based therapies. Stroke 40: S143–S145.PubMedCrossRefGoogle Scholar
  38. 38.
    Schwarting, S., S. Litwak, W. Hao, M. Bahr, J. Weise, and H. Neumann. 2008. Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke 39: 2867–2875.PubMedCrossRefGoogle Scholar
  39. 39.
    Sarnowska, A., H. Braun, S. Sauerzweig, and K.G. Reymann. 2009. The neuroprotective effect of bone marrow stem cells is not dependent on direct cell contact with hypoxic injured tissue. Experimental Neurology 215: 317–327.PubMedCrossRefGoogle Scholar
  40. 40.
    Hayakawa, K., K. Mishima, M. Nozako, M. Hazekawa, S. Mishima, M. Fujioka, et al. 2008. Delayed treatment with minocycline ameliorates neurologic impairment through activated microglia expressing a high-mobility group box1-inhibiting mechanism. Stroke 39: 951–958.PubMedCrossRefGoogle Scholar
  41. 41.
    Vendrame, M., C. Gemma, D. de Mesquita, L. Collier, P.C. Bickford, C.D. Sanberg, et al. 2005. Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells and Development 14: 595–604.PubMedCrossRefGoogle Scholar
  42. 42.
    Capone, C., S. Frigerio, S. Fumagalli, M. Gelati, M.C. Principato, C. Storini, et al. 2007. Neurosphere-derived cells exert a neuroprotective action by changing the ischemic microenvironment. PLoS One 4: 1–11.Google Scholar
  43. 43.
    Shechter, R., A. London, C. Varol, C. Raposo, M. Cusimano, G. Yovel, et al. 2009. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Medicine 6: 1–13.CrossRefGoogle Scholar
  44. 44.
    Coyne, T.M., A.J. Marcus, D. Woodbury, and I.B. Black. 2006. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells 24: 2483–2492.PubMedCrossRefGoogle Scholar
  45. 45.
    Molcanyi, M., P. Riess, K. Bentz, M. Maegele, J. Hescheler, B. Schafke, et al. 2007. Trauma-associated inflammatory response impairs embryonic stem cell survival and integration after implantation into injured rat brain. Journal of Neurotrauma 24: 625–637.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Marcelo M. Cardoso
    • 1
  • Edna C. S. Franco
    • 1
    • 2
  • Celice C. de Souza
    • 1
  • Michelle C. da Silva
    • 1
  • Amauri Gouveia
    • 3
  • Walace Gomes-Leal
    • 1
    Email author
  1. 1.Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological SciencesFederal University of Pará-BrazilBelémBrazil
  2. 2.Theory and Research of Behavior NucleusFederal University of ParáBelémBrazil
  3. 3.Technological Innovation Center, Arbovirus and Hemorrhagic Fever DepartmentEvandro Chagas Institute (IEC-SVS/MS)AnanindeuaBrazil

Personalised recommendations