Inflammation

, Volume 35, Issue 5, pp 1659–1668 | Cite as

Sulfated Derivative of 20(S)-Ginsenoside Rh2 Inhibits Inflammatory Cytokines Through MAPKs and NF-kappa B Pathways in LPS-Induced RAW264.7 Macrophages

  • Wen-Yan Bi
  • Ben-Dong Fu
  • Hai-Qing Shen
  • Qian Wei
  • Cui Zhang
  • Zhou Song
  • Qian-Qian Qin
  • Hui-Ping Li
  • Shuang Lv
  • Shuai-Cheng Wu
  • Peng-Fei Yi
  • Xu-Bin Wei
Article

Abstract

In the previous study, we found that sulfated derivative B2 of ginsenoside Rh2 (Rh2-B2) has greater anti-inflammatory effects than 20(S)-ginsenoside Rh2. However, the anti-inflammatory mechanism of Rh2-B2 remains unclear. We therefore assessed the effects of Rh2-B2 on inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We found that Rh2-B2 (1–5 mg/L) significantly inhibited tumor necrosis factor alpha, interleukin (IL)-6, IL-1β, and increased IL-10 production from protein and mRNA levels. Furthermore, Rh2-B2 significantly inhibited the phosphorylation of p38 and c-Jun N-terminal kinase as well as decreased p65 nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) translocation into the nucleus by nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha degradation. The present results indicate that Rh2-B2 inhibits the production of inflammatory cytokines induced by LPS through blocking mitogen-activated protein kinases and NF-κB signaling pathways.

KEY WORDS

ginsenoside Rh2 derivative inflammation signaling pathway 

Notes

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (no. 30800834), as well as partly by the Open Project Programs from Beijing Key Laboratory of Traditional Chinese Veterinary Medicine at Beijing University of Agriculture (no. TCVM-201104), and from Key Laboratory of Veterinary Pharmaceutics Discovery, Ministry of Agriculture and Key Laboratory of New Animal Drug Project of Gansu Province (no. SYSKF2011KT05).

References

  1. 1.
    Liu, J., K. Shimizu, H. Yu, C. Zhang, F. Jin, and R. Kondo. 2010. Stereospecificity of hydroxyl group at C-20 in antiproliferative action of ginsenoside Rh2 on prostate cancer cells. Fitoterapia 81: 902–905.PubMedCrossRefGoogle Scholar
  2. 2.
    Rhule, A., S. Navarro, J.R. Smith, and D.M. Shepherd. 2006. Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. Journal of Ethnopharmacology 106: 121–128.PubMedCrossRefGoogle Scholar
  3. 3.
    Gu, Y., G.J. Wang, J.G. Sun, Y.W. Jia, W. Wang, M.J. Xu, T. Lv, Y.T. Zheng, and Y. Sai. 2009. Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food and Chemical Toxicology 47: 2257–2268.PubMedCrossRefGoogle Scholar
  4. 4.
    Choi, S., T.W. Kim, and S.V. Singh. 2009. Ginsenoside Rh2-mediated G1 phase cell cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27 Kip1-dependent inhibition of cyclin-dependent kinases. Pharmaceutical Research 26: 2280–2288.PubMedCrossRefGoogle Scholar
  5. 5.
    Hwang, J.T., S.H. Kim, M.S. Lee, S.H. Kim, H.J. Yang, M.J. Kim, H.S. Kim, J. Ha, M.S. Kim, and D.Y. Kwon. 2007. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochemical and Biophysical Research Communications 364: 1002–1008.PubMedCrossRefGoogle Scholar
  6. 6.
    Choi, K., M. Kim, J. Ryu, and C. Choi. 2007. Ginsenosides compound K and Rh(2) inhibit tumor necrosis factor-alpha-induced activation of the NF-kappaB and JNK pathways in human astroglial cells. Neuroscience Letters 421: 37–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhu, W., B. Fu, L. Wang, C. He, S. Lu, W. Bi, H. Sheng, and X. Wei. 2011. Effect of 20(s)-ginsenoside Rh2 sulfated derivatives on the macrophage competence. Chinese Journal o f Veterinary Science 31: 394–398.Google Scholar
  8. 8.
    Minagar, A., P. Shapshak, R. Fujimura, R. Ownby, M. Heyes, and C. Eisdorfer. 2002. The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. Journal of Neurological Sciences 202: 13–23.CrossRefGoogle Scholar
  9. 9.
    Wang, Y., C. Yu, Y. Pan, J. Li, Y. Zhang, F. Ye, S. Yang, H. Zhang, X. Li, and G. Liang. 2011. A novel compound c12 inhibits inflammatory cytokine production and protects from inflammatory injury in vivo. PLoS One 6: e24377.PubMedCrossRefGoogle Scholar
  10. 10.
    Smallie, T., G. Ricchetti, N.J. Horwood, M. Feldmann, A.R. Clark, and L.M. Williams. 2010. IL-10 inhibits transcription elongation of the human TNF gene in primary macrophages. The Journal of Experimental Medicine 207: 2081–2088.PubMedCrossRefGoogle Scholar
  11. 11.
    Ren, G., X. Zhao, L. Zhang, J. Zhang, A. L’Huillier, W. Ling, A.I. Roberts, A.D. Le, S. Shi, C. Shao, and Y. Shi. 2010. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. Journal of Immunology 184: 2321–2328.CrossRefGoogle Scholar
  12. 12.
    Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling 13: 85–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Dai, J.N., Y. Zong, L.M. Zhong, Y.M. Li, W. Zhang, L.G. Bian, Q.L. Ai, Y.D. Liu, J. Sun, and D. Lu. 2011. Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. PLoS One 6: e21891.PubMedCrossRefGoogle Scholar
  14. 14.
    Minhajuddin, M., F. Fazal, K.M. Bijli, M.R. Amin, and A. Rahman. 2005. Inhibition of mammalian target of rapamycin potentiates thrombin-induced intercellular adhesion molecule-1 expression by accelerating and stabilizing NF-kappa B activation in endothelial cells. Journal of Immunology 174: 5823–5829.Google Scholar
  15. 15.
    Ben-Neriah, Y. 2002. Regulatory functions of ubiquitination in the immune system. Nature Immunology 3: 20–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Surh, Y.J., K.S. Chun, H.H. Cha, S.S. Han, Y.S. Keum, K.K. Park, and S.S. Lee. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutation Research 480–481: 243–268.PubMedCrossRefGoogle Scholar
  17. 17.
    Lappas, M., M. Permezel, H.M. Georgiou, and G.E. Rice. 2002. Nuclear factor kappa B regulation of proinflammatory cytokines in human gestational tissues in vitro. Biology of Reproduction 67: 668–673.PubMedCrossRefGoogle Scholar
  18. 18.
    Xing, Z., Y. Ohkawara, M. Jordana, F.L. Graham, and J. Gauldie. 1997. Adenoviral vector-mediated interleukin-10 expression in vivo: intramuscular gene transfer inhibits cytokine responses in endotoxemia. Gene Therapy 4: 140–149.PubMedCrossRefGoogle Scholar
  19. 19.
    Grutz, G. 2005. New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. Journal of Leukocyte Biology 77: 3–15.PubMedGoogle Scholar
  20. 20.
    Taylor, P.C., A.M. Peters, E. Paleolog, P.T. Chapman, M.J. Elliott, R. McCloskey, M. Feldmann, and R.N. Maini. 2000. Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor alpha blockade in patients with rheumatoid arthritis. Arthritis and Rheumatism 43: 38–47.PubMedCrossRefGoogle Scholar
  21. 21.
    Tak, P.P., P.C. Taylor, F.C. Breedveld, T.J. Smeets, M.R. Daha, P.M. Kluin, A.E. Meinders, and R.N. Maini. 1996. Decrease in cellularity and expression of adhesion molecules by anti-tumor necrosis factor alpha monoclonal antibody treatment in patients with rheumatoid arthritis. Arthritis and Rheumatism 39: 1077–1081.PubMedCrossRefGoogle Scholar
  22. 22.
    Cho, S.Y., S.J. Park, M.J. Kwon, T.S. Jeong, S.H. Bok, W.Y. Choi, W.I. Jeong, S.Y. Ryu, S.H. Do, C.S. Lee, J.C. Song, and K.S. Jeong. 2003. Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-kappaB pathway in lipopolysaccharide-stimulated macrophage. Molecular and Cellular Biochemistry 243: 153–160.PubMedCrossRefGoogle Scholar
  23. 23.
    Akira, S., H. Isshiki, T. Sugita, O. Tanabe, S. Kinoshita, Y. Nishio, T. Nakajima, T. Hirano, and T. Kishimoto. 1990. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO Journal 9: 1897–1906.PubMedGoogle Scholar
  24. 24.
    Johnson, G.L., and R. Lapadat. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911–1912.PubMedCrossRefGoogle Scholar
  25. 25.
    Raingeaud, J., S. Gupta, J.S. Rogers, M. Dickens, J. Han, R.J. Ulevitch, and R.J. Davis. 1995. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. Journal of Biological Chemistry 270: 7420–7426.PubMedCrossRefGoogle Scholar
  26. 26.
    Shen, Y.H., J. Godlewski, J. Zhu, P. Sathyanarayana, V. Leaner, M.J. Birrer, A. Rana, and G. Tzivion. 2003. Cross-talk between JNK/SAPK and ERK/MAPK pathways: sustained activation of JNK blocks ERK activation by mitogenic factors. Journal of Biological Chemistry 278: 26715–26721.PubMedCrossRefGoogle Scholar
  27. 27.
    Gloeckner, C.J., A. Schumacher, K. Boldt, and M. Ueffing. 2009. The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. Journal of Neurochemistry 109: 959–968.PubMedCrossRefGoogle Scholar
  28. 28.
    Kim, N.H., Y. Son, S.O. Jeong, J. Moon Hur, H. Soo Bang, K.N. Lee, E.C. Kim, H.T. Chung, and H.O. Pae. 2010. Tetrahydroabietic acid, a reduced abietic acid, inhibits the production of inflammatory mediators in RAW264.7 macrophages activated with lipopolysaccharide. Journal of Clinical Biochemistry and Nutrition 46: 119–125.PubMedCrossRefGoogle Scholar
  29. 29.
    Kim, Y.W., R.J. Zhao, S.J. Park, J.R. Lee, I.J. Cho, C.H. Yang, S.G. Kim, and S.C. Kim. 2008. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-kappaB-dependent iNOS and proinflammatory cytokines production. British Journal of Pharmacology 154: 165–173.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wen-Yan Bi
    • 1
  • Ben-Dong Fu
    • 1
  • Hai-Qing Shen
    • 1
  • Qian Wei
    • 2
  • Cui Zhang
    • 1
  • Zhou Song
    • 1
  • Qian-Qian Qin
    • 1
  • Hui-Ping Li
    • 1
  • Shuang Lv
    • 1
  • Shuai-Cheng Wu
    • 1
  • Peng-Fei Yi
    • 1
  • Xu-Bin Wei
    • 1
  1. 1.Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary MedicineJilin UniversityChangchunChina
  2. 2.Department of Cardiology, Affiliated HospitalChangchun University of Chinese MedicineChangchunChina

Personalised recommendations