Advertisement

Inflammation

, Volume 35, Issue 4, pp 1462–1465 | Cite as

Suppressive Effects of N-Acetyl-d-Glucosamine on Rheumatoid Arthritis Mouse Models

  • Kazuo Azuma
  • Tomohiro Osaki
  • Takashi Wakuda
  • Takeshi Tsuka
  • Tomohiro Imagawa
  • Yoshiharu Okamoto
  • Saburo Minami
Article

Abstract

We examined effects of N-acetyl-d-glucosamine (GlcNAc) on rheumatoid arthritis (RA) mouse models and effects of GlcNAc and glucosamine hydrochloride (GlcN) on several serum cytokine productions in RA mouse models. SKG/jcl mice were divided into control, GlcNAc, and GlcN groups. For 56 days, the control group received normal food, the GlcNAc group received 0.5 % GlcNAc-containing food, and the GlcN group received 0.5 % GlcN-containing food. GlcNAc and GlcN equally suppressed arthritis scores and histopathological scores compared to the control group. In the GlcN group, serum tumor necrosis factor-α and interleukin (IL)-6 concentrations were significantly decreased compared to the control group. In the GlcNAc group, serum IL-10, transforming growth factor β-1, and IL-2 concentrations were significantly increased compared to the control group. Our results indicated that GlcNAc also has suppressive effects on experimental RA in mouse models. The results of serum cytokine concentrations suggested that compared to GlcN, GlcNAc has a different suppressive mechanism in experimental RA models.

KEY WORDS

N-acetyl-d-glucosamine d-glucosamine hydrochloride SKG/jcl mice rheumatoid arthritis 

Notes

Acknowledgements

We would like to thank Yaizu SuisannKagaku Industry Co. Ltd. (Shizuoka, Japan) and Koyo Chemical Co. Ltd. (Tokyo, Japan) for providing the test material.

References

  1. 1.
    Anderson, J.W., R.J. Nicolosi, and J.F. Borzelleca. 2005. Glucosamine effects in humans: a review of effects on glucose metabolism, side effects, safety considerations and efficacy. Food and Chemical Toxicology 43(2): 187–201.PubMedCrossRefGoogle Scholar
  2. 2.
    Chen, J.K., C.R. Shen, and C.L. Liu. 2010. N-Acetylglucosamine: production and applications. Marine Drugs 8(9): 2493–2516.PubMedCrossRefGoogle Scholar
  3. 3.
    Shikhman, A.R., D.C. Brinson, J. Valbracht, and M.K. Lotz. 2009. Differential metabolic effects of glucosamine and N-acetylglucosamine in human articular chondrocytes. Osteoarthritis and Cartilage 17(8): 1022–1028.PubMedCrossRefGoogle Scholar
  4. 4.
    Hua, J., K. Sakamoto, T. Kikukawa, C. Abe, H. Kurosawa, and I. Nagaoka. 2007. Evaluation of the suppressive actions of glucosamine on the interleukin-1beta-mediated activation of synoviocytes. Inflammation Research 56(10): 432–438.PubMedCrossRefGoogle Scholar
  5. 5.
    Ngian, G.S. 2010. Rheumatoid arthritis. Australian Family Physician 39(9): 626–628.PubMedGoogle Scholar
  6. 6.
    Hua, J., S. Suguro, S. Hirano, K. Sakamoto, and I. Nagaoka. 2005. Preventive actions of a high dose of glucosamine on adjuvant arthritis in rats. Inflammation Research 54(3): 127–132.PubMedCrossRefGoogle Scholar
  7. 7.
    Sakaguchi, N., T. Takahashi, H. Hata, T. Nomura, T. Tagami, S. Yamazaki, T. Sakihama, T. Matsutani, I. Negishi, S. Nakatsuru, and S. Sakaguchi. 2003. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426(6965): 454–460.PubMedCrossRefGoogle Scholar
  8. 8.
    Hata, H., N. Sakaguchi, H. Yoshitomi, Y. Iwakura, K. Sekikawa, Y. Azuma, C. Kanai, E. Moriizumi, T. Nomura, T. Nakamura, and S. Sakaguchi. 2004. Distinct contribution of IL-6, TNF-alpha, IL-1, and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice. Journal of Clinical Investigation 114(4): 582–588.PubMedGoogle Scholar
  9. 9.
    Yoshitomi, H., N. Sakaguchi, K. Kobayashi, G.D. Brown, T. Tagami, T. Sakihama, et al. 2005. A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. The Journal of Experimental Medicine 201(6): 949–960.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee, E.K., S.M. Kang, D.J. Paik, J.M. Kim, and J. Youn. 2005. Essential roles of Toll-like receptor-4 signaling in arthritis induced by type II collagen antibody and LPS. International Immunology 17(3): 325–333.PubMedCrossRefGoogle Scholar
  11. 11.
    Hawkey, C., A. Kahan, K. Steinbrück, C. Alegre, E. Baumelou, B. Bégaud, et al. 1998. Gastrointestinal tolerability of meloxicam compared to diclofenac in osteoarthritis patients. International MELISSA Study Group. Meloxicam Large-scale International Study Safety Assessment. British Journal of Rheumatology 37(10): 937–945.PubMedCrossRefGoogle Scholar
  12. 12.
    Bianchi, A., Bécuwe, P., Dauça, M., Netter, P., Magdalou, J., Terlain, B., and Bordji, K. 2002. Glucosamine modulates IL-1-induced activation of rat chondrocytes at a receptor level, and by inhibiting the NF-κB pathway. FEBS Letters 510(3): 166–170.Google Scholar
  13. 13.
    Sakaguchi, S., M. Ono, R. Setoguchi, H. Yagi, S. Hori, Z. Fehervari, J. Shimizu, T. Takahashi, and T. Nomura. 2006. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunology Reviews 212: 8–27.CrossRefGoogle Scholar
  14. 14.
    Nistala, K., and L.R. Wedderburn. 2009. Th17 and regulatory T cells: rebalancing pro- and anti-inflammatory forces in autoimmune arthritis. Rheumatology (Oxford, England) 48(6): 602–606.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kazuo Azuma
    • 1
  • Tomohiro Osaki
    • 1
  • Takashi Wakuda
    • 1
  • Takeshi Tsuka
    • 1
  • Tomohiro Imagawa
    • 1
  • Yoshiharu Okamoto
    • 1
  • Saburo Minami
    • 1
  1. 1.Department of Veterinary Clinical MedicineTottoriJapan

Personalised recommendations