, Volume 35, Issue 3, pp 1119–1131 | Cite as

A Distinct Regulatory Role of Th17 Cytokines IL-17A and IL-17F in Chemokine Secretion from Lung Microvascular Endothelial Cells

  • Hitomi Fujie
  • Kaijun Niu
  • Michiru Ohba
  • Yoshihisa Tomioka
  • Haruki Kitazawa
  • Kengo Nagashima
  • Takashi Ohrui
  • Muneo Numasaki


Th17 cytokines IL-17A and IL-17F play a critical role in the activation and recruitment of neutrophils at airway inflammation mainly through the induction of CXC chemokines in the lungs. Vascular endothelial cells belong to the category of major CXC chemokine-producing cells. However, until now, the precise role of Th17 cytokines in CXC chemokine secretion in lung microvascular endothelial cells (LMVECs) has not been fully elucidated. In this study, we examined the biological effects of Th17 cytokines IL-17A and IL-17F on CXCL1, CXCL5, and CXCL8 release in LMVECs. Both IL-17 receptor A (IL-17RA) and IL-17RC are expressed on the surface of LMVECs. In contrast to IL-17F, IL-17A significantly upregulated CXCL1 mRNA expression and protein release, whereas both IL-17A and IL-17F did not have the ability to induce CXCL5 and CXCL8 secretion in LMVECs. IL-17A and IL-17F displayed positive regulatory effects on IL-1β-induced CXCL1, CXCL5, and CXCL8 secretion. On the other hand, IL-17A enhanced the upregulating effect of TNF-α on CXCL1, CXCL5, and CXCL8 release, whereas IL-17F had a negative regulatory effect on TNF-α-mediated secretion. Th2 cytokines IL-4 and IL-13 showed an inhibitory effect on IL-1β plus IL-17A-induced CXCL1, CXCL5, and CXCL8 secretion, but displayed a positive regulatory effect on TNF-α plus IL-17A-induced secretion. These results provide evidence that Th17 cytokines IL-17A and IL-17F have a distinct regulatory role in CXCL1, CXCL5, and CXCL8 expression in LMVECs stimulated either with IL-1β or with TNF-α. Our findings also suggest that CXC chemokine secretion in LMVECs may be complicatedly regulated by Th17 cytokines, Th2 cytokines, and macrophage-associated cytokines in pathological conditions such as bronchial asthma.


Th17 vascular endothelial cell chemokine 





Tumor necrosis factor


Monoclonal antibody




Messenger ribonucleic acid


Growth-related oncogene


Granulocyte chemotactic protein


Epithelial cell-derived neutrophil-activating protein


Monocyte chemotactic protein-1


Standard deviation



This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (to M.N.). We thank Miss Eri Fujita for her excellent assistance in carrying out this study.


  1. 1.
    Harrington, L.E., R.D. Hatton, P.R. Mangan, H. Turner, T.L. Murphy, K.M. Murphy, and C.T. Weaver. 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunology 6: 1123–1132.PubMedCrossRefGoogle Scholar
  2. 2.
    Park, H., Z. Li, X.O. Yang, S.H. Chang, R. Nurieva, Y.H. Wang, Y. Wang, L. Hood, Z. Zhu, Q. Tian, and C. Dong. 2005. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunology 6: 1133–1141.PubMedCrossRefGoogle Scholar
  3. 3.
    Liang, S.C., Y.Y. Tan, D.P. Luxenberg, R. Karim, K. Dunussi-Joannopoulos, M. Collins, and L.A. Fouser. 2006. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. The Journal of Experimental Medicine 203: 2271–2279.PubMedCrossRefGoogle Scholar
  4. 4.
    Kreymborg, K., R. Etzensperger, L. Dumoutier, S. Haak, A. Rebollo, T. Buch, F.L. Heppner, J.C. Renauld, and B. Becher. 2007. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. Journal of Immunology 179: 8098–8104.Google Scholar
  5. 5.
    Weaver, C.T., R.D. Hatton, P.R. Mangan, and L.E. Harrington. 2007. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annual Review of Immunology 25: 821–852.PubMedCrossRefGoogle Scholar
  6. 6.
    Yao, Z., W.C. Fanslow, M.F. Seldin, A.M. Rousseau, S.L. Painter, M.R. Comeau, J.I. Cohen, and M.K. Spriggs. 1995. Herpesvirus saimiri encodes new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3: 811–821.PubMedCrossRefGoogle Scholar
  7. 7.
    Fossiez, F., O. Djossou, P. Chomarat, L. Flores-Romo, S. Ait-Yahia, C. Maat, J.J. Pin, P. Garrone, E. Garcia, S. Saeland, D. Blanchard, C. Gaillard, B. Das Mahapatra, E. Rouvier, P. Golstein, J. Banchereau, and S. Lebecque. 1996. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. The Journal of Experimental Medicine 183: 2593–2603.PubMedCrossRefGoogle Scholar
  8. 8.
    Numasaki, M., J. Fukushi, M. Ono, S.K. Narula, P.J. Zavodny, T. Kudo, P.D. Robbins, H. Tahara, and M.T. Lotze. 2003. Interleukin-17 promotes angiogenesis and tumor growth. Blood 101: 2620–2627.PubMedCrossRefGoogle Scholar
  9. 9.
    Numasaki, M., M. Watanabe, T. Suzuki, H. Takahashi, A. Nakamura, F. McAllister, T. Hishinuma, J. Goto, M.T. Lotze, J.K. Kolls, and H. Sasaki. 2005. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. Journal of Immunology 175: 6177–6189.Google Scholar
  10. 10.
    Jones, C.E., and K. Chan. 2002. Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-α, and granulocyte colony-stimulating factor by human airway epithelial cells. American Journal of Respiratory Cell and Molecular Biology 26: 748–753.PubMedGoogle Scholar
  11. 11.
    Prause, O., M. Laan, J. Lotvall, and A. Linden. 2003. Pharmacological modulation of interleukin-17-induced GCP-2, GRO-α and interleukin-8 release in human bronchial epithelial cells. European Journal of Pharmacology 462: 193–198.PubMedCrossRefGoogle Scholar
  12. 12.
    Ye, P., F.H. Rodriguez, S. Kanaly, K.L. Stocking, J. Schurr, P. Schwarzenberger, P. Oliver, W. Huang, P. Zhang, J. Zhang, J.E. Shellito, G.J. Bagby, S. Nelson, K. Charrier, J.J. Peschon, and J.K. Kolls. 2001. Requirement of interleukin-17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. The Journal of Experimental Medicine 194: 519–527.PubMedCrossRefGoogle Scholar
  13. 13.
    Laan, M., Z.-H. Cui, H. Hoshino, J. Lotvall, M. Sjostrand, D.C. Gruevert, B.-E. Skoogh, and A. Linden. 1999. Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. Journal of Immunology 162: 2347–2352.Google Scholar
  14. 14.
    Hymowitz, S.G., E.H. Filvaroff, J.P. Yin, J. Lee, L. Cai, P. Risser, M. Maruoka, W. Mao, J. Foster, R.F. Kelley, G. Pan, A.L. Gurney, A.M. de Vos, and M.A. Starovasnik. 2001. IL-17s adopt a cysteine knot fold: Structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO Journal 20: 5332–5341.PubMedCrossRefGoogle Scholar
  15. 15.
    Starnes, T., M.J. Robertson, G. Sledge, S. Kelich, H. Nakshatri, H.E. Broxmeyer, and R. Hromas. 2001. IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. Journal of Immunology 167: 4137–4140.Google Scholar
  16. 16.
    Oda, N., P.B. Canelos, D.M. Essayan, B.A. Plunkett, A.C. Myers, and S.K. Huang. 2005. Interleukin-17F induces pulmonary neutrophilia and amplifies antigen-induced allergic response. American Journal of Respiratory and Critical Care Medicine 2171: 12–18.Google Scholar
  17. 17.
    Kawaguchi, M., L.F. Onuchic, X.D. Li, D.M. Essayan, J. Schroeder, H.Q. Xiao, M.C. Liu, G. Krishnaswamy, G. Germino, and S.K. Huang. 2001. Identification of a novel cytokine, ML-1, and its expression in subjects with asthma. Journal of Immunology 167: 4430–4435.Google Scholar
  18. 18.
    Kawaguchi, M., F. Kokubu, S. Matsukura, K. Ieki, M. Ddaka, S. Watanabe, S. Suzuki, M. Adachi, and S.K. Huang. 2003. Induction of C-X-C chemokines, growth-related oncogene alpha expression, and epithelial cell-derived neutrophil-activating protein-78 by ML-1 (interleukin-17F) involves activation of Raf1-mitogen-activated protein kinase kinase-extracellular signal-regulated kinase 1/2 pathway. Journal of Pharmacology and Experimental Therapeutics 307: 1213–1220.PubMedCrossRefGoogle Scholar
  19. 19.
    Hizawa, N., M. Kawaguchi, S.K. Huang, and M. Nishimura. 2006. Role of interleukin-17F in chronic inflammatory and allergic lung disease. Clinical and Experimental Allergy 36: 1109–1114.PubMedCrossRefGoogle Scholar
  20. 20.
    Yang, X.O., S.H. Chang, H. Park, R. Nurieva, B. Shah, L. Acero, Y.H. Wang, K.S. Schluns, R.R. Broaddus, Z. Zhu, and C. Dong. 2008. Regulation of inflammatory responses by IL-17F. The Journal of Experimental Medicine 205: 1063–1075.PubMedCrossRefGoogle Scholar
  21. 21.
    Wilson, R.H., G.S. Whitehead, H. Nakano, M.E. Free, J.K. Kolls, and D.N. Cook. 2009. Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. American Journal of Respiratory and Critical Care Medicine 180: 720–730.PubMedCrossRefGoogle Scholar
  22. 22.
    Di Stefano, A., G. Caramori, I. Gnemmi, M. Contoli, C. Vicari, A. Capelli, F. Magno, S.E. D’Anna, A. Zanini, P. Brun, P. Casolari, K.F. Chung, P.J. Barnes, A. Papi, I. Adcock, and B. Balbi. 2009. T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clinical and Experimental Immunology 157: 316–324.PubMedCrossRefGoogle Scholar
  23. 23.
    Doe, C., M. Bafadhel, S. Siddiqui, D. Desai, V. Mistry, P. Rugman, M. McCormick, J. Woods, R. May, M.A. Sleeman, I.K. Anderson, and C.E. Brightling. 2010. Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest 138: 1140–1147.PubMedCrossRefGoogle Scholar
  24. 24.
    Molet, S., Q. Hamid, F. Davoine, E. Nutku, R. Taha, N. Pagé, R. Olivenstein, J. Elias, and J. Chakir. 2001. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. The Journal of Allergy and Clinical Immunology 108: 430–438.PubMedCrossRefGoogle Scholar
  25. 25.
    Hellings, P.W., A. Kasran, Z. Liu, P. Vandekerckhove, A. Wuyts, L. Overbergh, C. Mathieu, and J.L. Ceuppens. 2003. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. American Journal of Respiratory Cell and Molecular Biology 28: 42–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Chakir, J., J. Shannon, S. Molet, M. Fukakusa, J. Elias, M. Laviolette, L.P. Boulet, and Q. Hamid. 2003. Airway remodeling-associated mediators in moderate to severe asthma: Effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. The Journal of Allergy and Clinical Immunology 111: 1293–1298.PubMedCrossRefGoogle Scholar
  27. 27.
    Song, C., L. Luo, Z. Lei, B. Li, Z. Liang, G. Liu, D. Li, G. Zhang, B. Huang, and Z.H. Feng. 2008. IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. Journal of Immunology 181: 6117–6124.Google Scholar
  28. 28.
    Wakashin, H., K. Hirose, Y. Maezawa, S. Kagami, A. Suto, N. Watanabe, Y. Saito, M. Hatano, T. Tokuhisa, Y. Iwakura, P. Puccetti, I. Iwamoto, and H. Nakajima. 2008. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. American Journal of Respiratory and Critical Care Medicine 178: 1023–1032.PubMedCrossRefGoogle Scholar
  29. 29.
    McKinley, L., J.F. Alcorn, A. Peterson, R.B. Dupont, S. Kapadia, A. Logar, A. Henry, C.G. Irvin, J.D. Piganelli, A. Ray, and J.K. Kolls. 2008. Journal of Immunology 181: 4089–4097.Google Scholar
  30. 30.
    Tesmer, L.A., S.K. Lundy, S. Sarkar, and D.A. Fox. 2008. Th17 cells in human disease. Immunology Reviews 223: 87–113.CrossRefGoogle Scholar
  31. 31.
    Fujiwara, M., K. Hirose, S. Kagami, H. Takatori, H. Wakashin, T. Tamachi, N. Watanabe, Y. Saito, I. Iwamoto, and H. Nakajima. 2007. T-bet inhibits both TH2 cell-mediated eosinophil recruitment and TH17 cell-mediated neutrophil recruitment into the airways. The Journal of Allergy and Clinical Immunology 119: 662–670.PubMedCrossRefGoogle Scholar
  32. 32.
    Vanaudenaerde, B.M., S.E. Verleden, R. Vos, S.I. De Vleeschauwer, A. Willems-Widyastuti, R. Geenens, D.E. Van Raemdonck, L.J. Dupont, E.K. Verbeken, and I. Meyts. 2011. Innate and adaptive interleukin-17-producing lymphocytes in chronic inflammatory lung disorders. American Journal of Respiratory and Critical Care Medicine 181: 977–986.CrossRefGoogle Scholar
  33. 33.
    Al-Ramli, W., D. Préfontaine, F. Chouiali, J.G. Martin, R. Olivenstein, C. Lemière, and Q. Hamid. 2009. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. The Journal of Allergy and Clinical Immunology 123: 1185–1187.PubMedCrossRefGoogle Scholar
  34. 34.
    Schwarzenberger, P., W. Huang, and P. Oliver. 2000. Requirement of endogenous stem cell factor and granulocyte-colony stimulating factor for IL-17-mediated granulopoiesis. Journal of Immunology 164: 4783–4789.Google Scholar
  35. 35.
    Beck, G.C., B.A. Yard, A.J. Breedijk, K. Van Ackern, and F.J. Van Der Woude. 1999. Release of CXC-chemokines by human lung microvascular endothelial cells (LMVEC) compared with macrovascular umbilical vein endothelial cells. Clinical and Experimental Immunology 118: 298–303.PubMedCrossRefGoogle Scholar
  36. 36.
    Kuestner, R.E., D.W. Taft, A. Haran, C.S. Brandt, T. Brender, K. Lum, B. Harder, S. Okada, C.D. Ostrander, J.L. Kreindler, S.J. Aujla, B. Reardon, M. Moore, P. Shea, R. Schreckhise, T.R. Bukowski, S. Presnell, P. Guerra-Lewis, J. Parrish-Novak, J.L. Ellsworth, S. Jaspers, K.E. Lewis, M. Appleby, J.K. Kolls, M. Rixon, J.W. West, Z. Gao, and S.D. Levin. 2007. Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. Journal of Immunology 179: 5462–5473.Google Scholar
  37. 37.
    Robinson, D.S., Q. Hamid, S. Ying, A. Tsicopoulos, J. Barkans, A.M. Bentley, C. Corrigan, S.R. Durham, and A.B. Kay. 1992. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. The New England Journal of Medicine 326: 298–304.PubMedCrossRefGoogle Scholar
  38. 38.
    Lajoie, S., I.P. Lewkowich, Y. Suzuki, J.R. Clark, A.A. Sproles, K. Dienger, A.L. Budelsky, and M. Wills-Karp. 2010. Complement-mediated regulation of the IL-17A axis is a central genetic determination of the severity of experimental allergic asthma. Nature Immunology 11: 928–936.PubMedCrossRefGoogle Scholar
  39. 39.
    Russo, C., and R. Polosa. 2005. TNF-α as a promising therapeutic target in chronic asthma: A lesson from rheumatoid arthritis. Clinical Science 109: 135–142.PubMedCrossRefGoogle Scholar
  40. 40.
    McCuskey, R.S., R. Urbaschek, and B. Urbaschek. 1996. The microcirculation during endotoxemia. Cardiovascular Research 32: 752–763.PubMedGoogle Scholar
  41. 41.
    Roussel, L., F. Houle, C. Chan, Y. Yao, J. Bérubé, R. Olivenstein, J.G. Martin, J. Huot, Q. Hamid, L. Ferri, and S. Rousseau. 2010. IL-17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation. Journal of Immunology 184: 4531–4537.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Hitomi Fujie
    • 1
  • Kaijun Niu
    • 2
  • Michiru Ohba
    • 1
  • Yoshihisa Tomioka
    • 3
  • Haruki Kitazawa
    • 4
  • Kengo Nagashima
    • 5
  • Takashi Ohrui
    • 6
  • Muneo Numasaki
    • 1
  1. 1.Department of Nutrition Physiology, Faculty of Pharmaceutical SciencesJosai UniversitySakadoJapan
  2. 2.Laboratory of Health & Sports Science, Division of Biomedical Engineering for Health & WelfareTohoku University Graduate School of Biomedical EngineeringSendaiJapan
  3. 3.Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
  4. 4.Food Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
  5. 5.Laboratory of Biostatistics, Faculty of Pharmaceutical SciencesJosai UniversitySakadoJapan
  6. 6.Division of Geriatric Pharmacology, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan

Personalised recommendations