Advertisement

Inflammation

, Volume 35, Issue 3, pp 967–977 | Cite as

Pyranocoumarins Isolated from Peucedanum praeruptorum Dunn Suppress Lipopolysaccharide-Induced Inflammatory Response in Murine Macrophages Through Inhibition of NF-κB and STAT3 Activation

  • Peng-Jiu Yu
  • Hong Jin
  • Jun-Yan Zhang
  • Guang-Fa Wang
  • Jing-Rong Li
  • Zheng-Guang Zhu
  • Yuan-Xin Tian
  • Shao-Yu Wu
  • Wei Xu
  • Jia-Jie Zhang
  • Shu-Guang Wu
Article

Abstract

Praeruptorin C, D, and E (PC, PD, and PE) are three pyranocoumarins isolated from the dried root of Peucedanum praeruptorum Dunn of Umbelliferae. In the present study, we investigated the anti-inflammatory effect of these compounds in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Pyranocoumarins significantly inhibited LPS-induced production of nitric oxide, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). The mRNA and protein expressions of inducible nitric oxide synthase, IL-6, and TNF-α were also suppressed by these compounds. Both PD and PE exhibited greater anti-inflammatory activities than PC. Further study showed that pyranocoumarins suppressed the cytoplasmic loss of inhibitor κB-α protein and inhibited the translocation of NF-κB from cytoplasm to nucleus. In addition, pyranocoumarins suppressed LPS-induced STAT3 tyrosine phosphorylation. Taken together, the results suggest that pyranocoumarins may exert anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages through the inhibition of NF-κB and STAT3 activation.

KEY WORDS

pyranocoumarin lipopolysaccharide nuclear factor-κB signal transducer and activator of transcription 3 nitric oxide tumor necrosis factor-α interleukin-6 macrophage 

Notes

Acknowledgment

This work was supported by grants from the Science and Technology Bureau of Guangzhou (2006Z1-E6021), the National Natural Science Foundation of China (no. 30901989), and the Natural Science Foundation of Guangdong Province (no. 9151063201000008)

References

  1. 1.
    Cohen, J. 2002. The immunopathogenesis of sepsis. Nature 420: 885–891.PubMedCrossRefGoogle Scholar
  2. 2.
    Poltorak, A., X. He, I. Smirnova, M.Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282: 2085–2088.PubMedCrossRefGoogle Scholar
  3. 3.
    Qureshi, S.T., L. Lariviere, G. Leveque, S. Clermont, K.J. Moore, P. Gros, and D. Malo. 1999. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189: 615–625.PubMedCrossRefGoogle Scholar
  4. 4.
    Ulevitch, R.J., and P.S. Tobias. 1995. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 13: 437–457.PubMedCrossRefGoogle Scholar
  5. 5.
    Laskin, D.L., and K.J. Pendino. 1995. Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol 35: 655–677.PubMedCrossRefGoogle Scholar
  6. 6.
    Dinarello, C.A. 2000. Proinflammatory cytokines. Chest 118: 503–508.PubMedCrossRefGoogle Scholar
  7. 7.
    Tracey, K.J. 2002. The inflammatory reflex. Nature 420: 853–859.PubMedCrossRefGoogle Scholar
  8. 8.
    Fujihara, M., M. Muroi, K. Tanamoto, T. Suzuki, H. Azuma, and H. Ikeda. 2003. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: Roles of the receptor complex. Pharmacol Ther 100: 171–194.PubMedCrossRefGoogle Scholar
  9. 9.
    Pahl, H.L. 1999. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853–6866.PubMedCrossRefGoogle Scholar
  10. 10.
    Sethi, G., and V. Tergaonkar. 2009. Potential pharmacological control of the NF-kappaB pathway. Trends Pharmacol Sci 30: 313–321.PubMedCrossRefGoogle Scholar
  11. 11.
    Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cell Signal 13: 85–94.PubMedCrossRefGoogle Scholar
  12. 12.
    Tamiya, T., I. Kashiwagi, R. Takahashi, H. Yasukawa, and A. Yoshimura. 2011. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: Regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler Thromb Vasc Biol 31: 980–985.PubMedCrossRefGoogle Scholar
  13. 13.
    Yu, H., D. Pardoll, and R. Jove. 2009. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat Rev Cancer 9: 798–809.PubMedCrossRefGoogle Scholar
  14. 14.
    Rawlings, J.S., K.M. Rosler, and D.A. Harrison. 2004. The JAK/STAT signaling pathway. J Cell Sci 117: 1281–1283.PubMedCrossRefGoogle Scholar
  15. 15.
    Gao, J.J., M.B. Filla, M.J. Fultz, S.N. Vogel, S.W. Russell, and W.J. Murphy. 1998. Autocrine/paracrine IFN-alphabeta mediates the lipopolysaccharide-induced activation of transcription factor Stat1alpha in mouse macrophages: Pivotal role of Stat1alpha in induction of the inducible nitric oxide synthase gene. J Immunol 161: 4803–4810.PubMedGoogle Scholar
  16. 16.
    Jacobs, A.T., and L.J. Ignarro. 2001. Lipopolysaccharide-induced expression of interferon-beta mediates the timing of inducible nitric-oxide synthase induction in RAW 264.7 macrophages. J Biol Chem 276: 47950–47957.PubMedGoogle Scholar
  17. 17.
    Lee, C., H.K. Lim, J. Sakong, Y.S. Lee, J.R. Kim, and S.H. Baek. 2006. Janus kinase-signal transducer and activator of transcription mediates phosphatidic acid-induced interleukin (IL)-1beta and IL-6 production. Mol Pharmacol 69: 1041–1047.PubMedGoogle Scholar
  18. 18.
    Samavati, L., R. Rastogi, W. Du, M. Huttemann, A. Fite, and L. Franchi. 2009. STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol Immunol 46: 1867–1877.PubMedCrossRefGoogle Scholar
  19. 19.
    Wu, J.Y., W.F. Fong, J.X. Zhang, C.H. Leung, H.L. Kwong, M.S. Yang, D. Li, and H.Y. Cheung. 2003. Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani. Eur J Pharmacol 473: 9–17.PubMedCrossRefGoogle Scholar
  20. 20.
    Kumar, A., R.A. Maurya, S. Sharma, P. Ahmad, A.B. Singh, G. Bhatia, and A.K. Srivastava. 2009. Pyranocoumarins: A new class of anti-hyperglycemic and anti-dyslipidemic agents. Bioorg Med Chem Lett 19: 6447–6451.PubMedCrossRefGoogle Scholar
  21. 21.
    Xu, Z.Q., K. Pupek, W.J. Suling, L. Enache, and M.T. Flavin. 2006. Pyranocoumarin, a novel anti-TB pharmacophore: Synthesis and biological evaluation against Mycobacterium tuberculosis. Bioorg Med Chem 14: 4610–4626.PubMedCrossRefGoogle Scholar
  22. 22.
    Garcia-Argaez, A.N., T.O. Ramirez Apan, H. Parra Delgado, G. Velazquez, and M. Martinez-Vazquez. 2000. Anti-inflammatory activity of coumarins from Decatropis bicolor on TPA ear mice model. Planta Med 66: 279–281.PubMedCrossRefGoogle Scholar
  23. 23.
    Kim, J.H., J.H. Jeong, S.T. Jeon, H. Kim, J. Ock, K. Suk, S.I. Kim, K.S. Song, and W.H. Lee. 2006. Decursin inhibits induction of inflammatory mediators by blocking nuclear factor-kappaB activation in macrophages. Mol Pharmacol 69: 1783–1790.PubMedCrossRefGoogle Scholar
  24. 24.
    Yu, P.J., W. Ci, G.F. Wang, J.Y. Zhang, S.Y. Wu, W. Xu, H. Jin, Z.G. Zhu, J.J. Zhang, J.X. Pang, and S.G. Wu. 2010. Praeruptorin a inhibits lipopolysaccharide-induced inflammatory response in murine macrophages through inhibition of NF-kappaB pathway activation. Phytother Res 25: 550–556.PubMedCrossRefGoogle Scholar
  25. 25.
    Chen, Z.X., B.S. Huang, Q.L. She, and G.F. Zeng. 1979. The chemical constituents of Bai-Hua-Qian-Hu, the root of Peucedanum praeruptorum Dunn. (Umbelliferae)—Four new coumarins (author’s transl). Yao Xue Xue Bao 14: 486–496.PubMedGoogle Scholar
  26. 26.
    Ye, J.S., H.Q. Zhang, and C.Q. Yuan. 1982. Isolation and identification of coumarin praeruptorin E from the root of the Chinese drug Peucedanum praeruptorum Dunn (Umbelliferae). Yao Xue Xue Bao 17: 431–434.PubMedGoogle Scholar
  27. 27.
    Bauche, F., J.P. Stephan, A.M. Touzalin, and B. Jegou. 1998. In vitro regulation of an inducible-type NO synthase in the rat seminiferous tubule cells. Biol Reprod 58: 431–438.PubMedCrossRefGoogle Scholar
  28. 28.
    Bogdan, C., M. Rollinghoff, and A. Diefenbach. 2000. The role of nitric oxide in innate immunity. Immunol Rev 173: 17–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Korhonen, R., A. Lahti, H. Kankaanranta, and E. Moilanen. 2005. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 4: 471–479.PubMedCrossRefGoogle Scholar
  30. 30.
    Pautz, A., J. Art, S. Hahn, S. Nowag, C. Voss, and H. Kleinert. 2010. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide. 23: 75–93.PubMedCrossRefGoogle Scholar
  31. 31.
    Kleinert, H., A. Pautz, K. Linker, and P.M. Schwarz. 2004. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 500: 255–266.PubMedCrossRefGoogle Scholar
  32. 32.
    Kim, H.J., K. Tsoyi, J.M. Heo, Y.J. Kang, M.K. Park, Y.S. Lee, J.H. Lee, H.G. Seo, H.S. Yun-Choi, and K.C. Chang. 2007. Regulation of lipopolysaccharide-induced inducible nitric-oxide synthase expression through the nuclear factor-kappaB pathway and interferon-beta/tyrosine kinase 2/Janus tyrosine kinase 2-signal transducer and activator of transcription-1 signaling cascades by 2-naphthylethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (THI 53), a new synthetic isoquinoline alkaloid. J Pharmacol Exp Ther 320: 782–789.PubMedCrossRefGoogle Scholar
  33. 33.
    Jung, H.J., S.J. Kim, W.K. Jeon, B.C. Kim, K. Ahn, K. Kim, Y.M. Kim, E.H. Park, and C.J. Lim. 2010. Anti-inflammatory activity of n-propyl gallate through down-regulation of NF-kappaB and JNK pathways. Inflammation 34: 352–361.CrossRefGoogle Scholar
  34. 34.
    Tak, P.P., and G.S. Firestein. 2001. NF-kappaB: A key role in inflammatory diseases. J Clin Invest 107: 7–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Thalhamer, T., M.A. McGrath, and M.M. Harnett. 2008. MAPKs and their relevance to arthritis and inflammation. Rheumatology (Oxford) 47: 409–414.CrossRefGoogle Scholar
  36. 36.
    Huang, W.L., H.H. Yeh, C.C. Lin, W.W. Lai, J.Y. Chang, W.T. Chang, and W.C. Su. 2010. Signal transducer and activator of transcription 3 activation up-regulates interleukin-6 autocrine production: A biochemical and genetic study of established cancer cell lines and clinical isolated human cancer cells. Mol Cancer 9: 309.PubMedCrossRefGoogle Scholar
  37. 37.
    Huang, C., J. Cao, K.J. Huang, F. Zhang, T. Jiang, L. Zhu, and Z.J. Qiu. 2006. Inhibition of STAT3 activity with AG490 decreases the invasion of human pancreatic cancer cells in vitro. Cancer Sci 97: 1417–1423.PubMedCrossRefGoogle Scholar
  38. 38.
    Akifusa, S., N. Kamio, Y. Shimazaki, N. Yamaguchi, K. Nonaka, and Y. Yamashita. 2010. Involvement of the JAK-STAT pathway and SOCS3 in the regulation of adiponectin-generated reactive oxygen species in murine macrophage RAW 264 cells. J Cell Biochem 111: 597–606.PubMedCrossRefGoogle Scholar
  39. 39.
    Kimura, A., T. Naka, T. Muta, O. Takeuchi, S. Akira, I. Kawase, and T. Kishimoto. 2005. Suppressor of cytokine signaling-1 selectively inhibits LPS-induced IL-6 production by regulating JAK-STAT. Proc Natl Acad Sci U S A 102: 17089–17094.PubMedCrossRefGoogle Scholar
  40. 40.
    Han, S.H., J.H. Kim, H.S. Seo, M.H. Martin, G.H. Chung, S.M. Michalek, and M.H. Nahm. 2006. Lipoteichoic acid-induced nitric oxide production depends on the activation of platelet-activating factor receptor and Jak2. J Immunol 176: 573–579.PubMedGoogle Scholar
  41. 41.
    Scherle, P.A., E.A. Jones, M.F. Favata, A.J. Daulerio, M.B. Covington, S.A. Nurnberg, R.L. Magolda, and J.M. Trzaskos. 1998. Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes. J Immunol 161: 5681–5686.PubMedGoogle Scholar
  42. 42.
    van der Bruggen, T., S. Nijenhuis, E. van Raaij, J. Verhoef, and B.S. van Asbeck. 1999. Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the raf-1/MEK1-MEK2/ERK1-ERK2 pathway. Infect Immun 67: 3824–3829.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Peng-Jiu Yu
    • 1
  • Hong Jin
    • 1
  • Jun-Yan Zhang
    • 1
  • Guang-Fa Wang
    • 1
  • Jing-Rong Li
    • 1
  • Zheng-Guang Zhu
    • 1
  • Yuan-Xin Tian
    • 1
  • Shao-Yu Wu
    • 1
  • Wei Xu
    • 1
  • Jia-Jie Zhang
    • 1
  • Shu-Guang Wu
    • 1
  1. 1.School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina

Personalised recommendations