Inflammation

, Volume 35, Issue 2, pp 584–593

Vascular Protective Role of Vitexicarpin Isolated from Vitex rotundifolia in Human Umbilical Vein Endothelial Cells

Article

Abstract

Pro-inflammatory cytokines induce injury of endothelial cells caused by increases of adhesion molecules, leading to vascular inflammation and the development of atherosclerosis. Recent pharmacological studies have demonstrated that vitexicarpin, a flavonoid isolated from Vitex rotundifolia, has anti-inflammatory, antitumor, and analgesic properties. In this study, we investigated whether vitexicarpin (5–100 nM) prevented the TNF-α-induced vascular inflammation process in human umbilical vein endothelial cells (HUVEC). We found that pretreatment with vitexicarpin decreased TNF-α (10 ng/ml)-induced expression of cell adhesion molecules such as vascular cell adhesion molecule-1, intracellular adhesion molecule-1, and E-selectin as well as matrix metalloproteinase-2 and -9 expression. Preincubation with vitexicarpin also dose-dependently inhibited TNF-α-induced adhesion of HL-60 monocytic cells. Vitexicarpin significantly decreased TNF-α-induced intracellular reactive oxygen species (ROS) production. Furthermore, vitexicarpin suppressed NF-κB nuclear translocation and transcriptional activity in TNF-α-treated HUVEC. In conclusion, vitexicarpin significantly reduced vascular inflammation, through inhibition of ROS–NF-κB pathway in vascular endothelial cells.

KEY WORDS

vitexicarpin adhesion molecule HUVEC inflammation NF-κB 

References

  1. 1.
    Libby, P. 2002. Inflammation in atherosclerosis. Nature 420: 868–874.PubMedCrossRefGoogle Scholar
  2. 2.
    Rao, R.M., L. Yang, G. Garcia-Cardena, and F.W. Luscinskas. 2007. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circulation Research 101: 234–47.PubMedCrossRefGoogle Scholar
  3. 3.
    Ross, R. 1999. Atherosclerosis—an inflammatory disease. The New England Journal of Medicine 340: 115–126.PubMedCrossRefGoogle Scholar
  4. 4.
    de Winther, M.P., E. Kanters, G. Kraal, and M.H. Hofker. 2005. Nuclear factor kappaB signaling in atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 25: 904–914.PubMedCrossRefGoogle Scholar
  5. 5.
    Chandrasekar, B., S. Mummidi, L. Mahimainathan, D.N. Patel, S.R. Bailey, S.Z. Imam, W.C. Greene, and A.J. Valente. 2006. Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-kappaB- and AP-1-mediated matrix metalloproteinase-9 expression and is inhibited by atorvastatin. The Journal of Biological Chemistry 281: 15099–15109.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen, J.W., Y.H. Chen, F.Y. Lin, Y.L. Chen, and S.J. Lin. 2003. Ginkgo biloba extract inhibits tumor necrosis factor-alpha-induced reactive oxygen species generation, transcription factor activation, and cell adhesion molecule expression in human aortic endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology 23: 1559–1566.PubMedCrossRefGoogle Scholar
  7. 7.
    Gey, K.F., H.B. Stahelin, and M. Eichholser. 1993. Poor plasma status of carotene and vitamin C is associated with higher mortality from ischemic heart disease and stroke: panel prospective study. The Journal of Clinical Investigation 71: 3–6.Google Scholar
  8. 8.
    Islam, K.N., S. Devaraj, and I. Jialal. 1998. Alpha-tocopherol enrichment of monocytes decrease agonist-induced adhesion to human endothelial cells. Circulation 98: 2255–2261.PubMedGoogle Scholar
  9. 9.
    Ko, W.G., T.H. Kang, S.J. Lee, Y.C. Kim, and B.H. Lee. 2001. Rotundifuran, a labdane type diterpene from Vitex rotundifolia, induces apoptosis in human myeloid leukaemia cells. Phytotherapy Research 15: 535–537.PubMedCrossRefGoogle Scholar
  10. 10.
    Ko, W.G., T.H. Kang, S.J. Lee, Y.C. Kim, and B.H. Lee. 2002. Effects of luteolin on the inhibition of proliferation and induction of apoptosis in human myeloid leukaemia cells. Phytotherapy Research 16: 295–298.PubMedCrossRefGoogle Scholar
  11. 11.
    You, K.M., K.H. Son, H.W. Chang, S.S. Kang, and H.P. Kim. 1998. Vitexicarpin, a flavonoid from the fruits of Vitex rotundifolia, inhibits mouse lymphocyte proliferation and growth of cell lines in vitro. Planta Medica 64: 546–550.PubMedCrossRefGoogle Scholar
  12. 12.
    Mesaik, M.A., Azizuddin, S. Murad, K.M. Khan, R.B. Tareen, A. Ahmed, Atta-ur-Rahman, and M.I. Choudhary. 2009. Isolation and immunomodulatory properties of a flavonoid, casticin from Vitex agnus-castus. Phytotherapy Research 23: 1516–1520.PubMedCrossRefGoogle Scholar
  13. 13.
    Ko, W.G., T.H. Kang, S.J. Lee, N.Y. Kim, Y.C. Kim, D.H. Sohn, and B.H. Lee. 2000. Polymethoxyflavonoids from Vitex rotundifolia inhibit proliferation by inducing apoptosis in human myeloid leukemia cells. Food and Chemical Toxicology 38: 861–865.PubMedCrossRefGoogle Scholar
  14. 14.
    Shanafelt, T.D., T.G. Call, C.S. Zent, B. LaPlant, D.A. Bawen, M. Roos, C.R. Secreto, A.K. Ghosh, B.F. Kabat, M.J. Lee, C.S. Yang, D.F. Jelinek, C. Erlichman, and N.E. Kay. 2009. Phase I trial of daily oral Polyphenon E in patients with asymptomatic Rai stage 0 to II chronic lymphocytic leukemia. Journal of Clinical Oncology 27: 3080–14.Google Scholar
  15. 15.
    Manduteanu, I., M. Voinea, F. Antohe, E. Dragomir, M. Capraru, L. Radulescu, and M. Simionescu. 2003. Effect of enoxaparin on high glucose-induced activation of endothelial cells. European Journal of Pharmacology 477: 269–276.PubMedCrossRefGoogle Scholar
  16. 16.
    Dschietzig, T., C. Richter, G. Pfannenschmidt, C. Bartsch, M. Laule, G. Baumann, and K. Stangl. 2001. Dexamethasone inhibits stimulation of pulmonary endothelins by proinflammatory cytokines: possible involvement of a nuclear factor kappa B dependent mechanism. Intensive Care Medicine 27: 751–756.PubMedCrossRefGoogle Scholar
  17. 17.
    Choi, Y.S., S. Kim, H.K. Lee, K.U. Lee, and Y.K. Pak. 2004. In vitro methylation of nuclear respiratory factor-1 binding site suppresses the promoter activity of mitochondrial transcription factor A. Biochemical and Biophysical Research Communications 314: 118–122.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhou, M., Z. Diwu, N. Panchuk-Voloshina, and R.P. Haugland. 1997. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Analytical Biochemistry 253: 162–168.PubMedCrossRefGoogle Scholar
  19. 19.
    Iglesias, J., V.E. Abernethy, Z. Wang, W. Lieberthal, J.S. Koh, and J.S. Levine. 1999. Albumin is a major serum survival factor for renal tubular cells and macrophages through scavenging of ROS. The American Journal of Physiology 277: 711–722.Google Scholar
  20. 20.
    Lee, Y.J., S.M. Hwang, D.G. Kang, J.S. Kim, and H.S. Lee. 2009. Effect of Gastrodia elata on tumor necrosis factor-alpha-induced matrix metalloproteinase activity in endothelial cells. Journal of Natural Medicines 63: 463–467.PubMedCrossRefGoogle Scholar
  21. 21.
    Carlos, T., N. Kovach, B. Schwartz, M. Rosa, B. Newman, E. Wayner, C. Benjamin, L. Osborn, R. Lobb, and J. Harlan. 1991. Human monocytes bind to two cytokine-induced adhesive ligands on cultured human endothelial cells: endothelial-leukocyte adhesion molecule-1 and vascular cell adhesion molecule-1. Blood 77: 2266–2271.PubMedGoogle Scholar
  22. 22.
    Basalyga, D.M., D.T. Simionescu, W. Xiong, B.T. Baxter, B.C. Starcher, and N.R. Vyavahare. 2004. Elastin degradation and calcification in an abdominal aorta injury model: role of matrix metalloproteinases. Circulation 110: 3480–3487.PubMedCrossRefGoogle Scholar
  23. 23.
    Toth, M., M.M. Bernardo, D.C. Gervasi, P.D. Soloway, Z. Wang, H.F. Bigg, C.M. Overall, Y.A. DeClerck, H. Tschesche, M.L. Cher, S. Brown, S. Mobashery, and R. Fridman. 2000. Tissue inhibitor of metalloproteinase (TIMP)-2 acts synergistically with synthetic matrix metalloproteinase (MMP) inhibitors but not with TIMP-4 to enhance the (Membrane type 1)-MMP-dependent activation of pro-MMP-2. The Journal of Biological Chemistry 275: 41415–41423.PubMedCrossRefGoogle Scholar
  24. 24.
    Victor, V.M., M. Rocha, E. Solá, C. Bañuls, K. Garcia-Malpartida, and A. Hernández-Mijares. 2009. Oxidative stress, endothelial dysfunction and atherosclerosis. Current Pharmaceutical Design 15: 2988–3002.PubMedCrossRefGoogle Scholar
  25. 25.
    Kanters, E., M. Pasparakis, M.J. Gijbels, M.N. Vergouwe, I. Partouns-Hendriks, R.J. Fijneman, B.E. Clausen, I. Förster, M.M. Kockx, K. Rajewsky, G. Kraal, M.H. Hofker, and M.P. de Winther. 2003. Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. The Journal of Clinical Investigation 112: 1176–1185.PubMedGoogle Scholar
  26. 26.
    Liang, Y., Y. Zhou, and P. Shen. 2004. NF-kappaB and its regulation on the immune system. Cellular and Molecular Immunology 1: 343–350.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.College of Oriental Medicine and Professional Graduate School of Oriental MedicineWonkwang UniversityIksanRepublic of Korea
  2. 2.Hanbang Body-Fluid Research CenterWonkwang UniversityIksanRepublic of Korea
  3. 3.College of PharmacyWonkwang UniversityIksanRepublic of Korea
  4. 4.Korea Institute of Oriental MedicineDaejeonRepublic of Korea

Personalised recommendations