, Volume 35, Issue 2, pp 520–526 | Cite as

Beneficial Effect of Interleukin-1 Receptor Antagonist Protein on Spinal Cord Injury Recovery in the Rat

  • Shaohui Zong
  • Gaofeng Zeng
  • Bo Wei
  • Chunxiang Xiong
  • Yuxi Zhao


We assessed the effect of treatment with the interleukin-1 receptor antagonist protein (IRAP) on morphological and functional recovery in a rat model of SCI. All sections were processed for immunohistochemistry, hematoxylin–eosin, and Nissl staining. Rats were assessed for hind limb motor function using the Basso, Beattie, and Bresnahan (BBB) hind limb locomotor rating scale and the inclined plane test. At 1, 48, and 72 h after operation, there was a significant increase in neurofilament proteins and brain-derived neurotrophic factor expression in the IRAP group I when compared with the saline group I and the sham-operated group I (P < 0.05). The mean inclined plane scores and BBB scores for the IRAP group II were higher than the saline group II at 1, 2, 3, and 4 weeks post-injury (P < 0.05). In conclusion, treatment with IRAP enhanced neuronal survival after SCI.


interleukin-1 receptor antagonist protein spinal cord injury rat inflammation behavior 



This study was supported by Dr. Start Fund of Guangxi Medical University (308010) and Research Foundation of Guangxi Education Department (Gui Education200710LX063).

Conflict of Interest Statement

The authors declare that there are no conflicts of interest.


  1. 1.
    Sud, S., S.Y. Yang, C.H. Evans, P.D. Robbins, and P.H. Wooley. 2001. Effects of cytokine gene therapy on particulate-induced inflammation in the murine air pouch. Inflammation 25: 361–372.PubMedCrossRefGoogle Scholar
  2. 2.
    Bravo, G., R. Rojas-Martínez, F. Larios, E. Hong, G. Castañeda-Hernández, G. Rojas, and G. Guízar-Sahagún. 2001. Mechanisms involved in the cardiovascular alterations immediately after spinal cord injury. Life Sciences 68: 1527–1534.PubMedCrossRefGoogle Scholar
  3. 3.
    Huang, H., S. Fan, X. Ji, Y. Zhang, F. Bao, and G. Zhang. 2009. Recombinant human erythropoietin protects against experimental spinal cord trauma injury by regulating expression of the proteins MKP-1 and p-ERK. The Journal of International Medical Research 37: 511–519.PubMedGoogle Scholar
  4. 4.
    Tzeng, S.F., H. Cheng, Y.S. Lee, J.P. Wu, B.J. Hoffer, and J.S. Kuo. 2001. Expression of neural cell adhesion molecule in spinal cords following a complete transection. Life Sciences 68(9): 1005–1012.PubMedCrossRefGoogle Scholar
  5. 5.
    Johnson, R.W., S. Arkins, R. Dantzer, and K.W. Kelley. 1997. Hormones, lymphohemopoietic cytokines and the neuroimmune axis. Comparative Biochemistry and Physiology. Part A, Physiology 116: 183–201.PubMedCrossRefGoogle Scholar
  6. 6.
    Xu, Z., B.R. Wang, X. Wang, F. Kuang, X.L. Duan, X.Y. Jiao, and G. Ju. 2006. ERK1/2 and p38 mitogen-activated protein kinase mediate iNOS-induced spinal neuron degeneration after acute traumatic spinal cord injury. Life Sciences 79: 1895–1905.PubMedCrossRefGoogle Scholar
  7. 7.
    Rothwell, N.J., and G.N. Luheshi. 2000. Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends in Neurosciences 23: 618–625.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang, X.F., L.D. Huang, P.P. Yu, J.G. Hu, L. Yin, L. Wang, X.M. Xu, and P.H. Lu. 2006. Upregulation of type I interleukin-1 receptor after traumatic spinal cord injury in adult rats. Acta Neuropatho 111: 220–228.CrossRefGoogle Scholar
  9. 9.
    Baamonde, A., V. Curto-Reyes, L. Juárez, A. Meana, A. Hidalgo, and L. Menéndez. 2007. Antihyperalgesic effects induced by the IL-1 receptor antagonist anakinra and increased IL-1beta levels in inflamed and osteosarcoma-bearing mice. Life Sciences 81: 673–682.PubMedCrossRefGoogle Scholar
  10. 10.
    Rohleder, N., J.M. Wolf, I. Herpfer, B.L. Fiebich, C. Kirschbaum, and K. Lieb. 2006. No response of plasma substance P, but delayed increase of interleukin-1 receptor antagonist to acute psychosocial stress. Life Sciences 78: 3082–3089.PubMedCrossRefGoogle Scholar
  11. 11.
    Wu, J., H. Yang, Z. Qiu, Q. Zhang, T. Ding, and D. Geng. 2010. Effect of combined treatment with methylprednisolone and Nogo-A monoclonal antibody after rat spinal cord injury. The Journal of International Medical Research 38: 570–582.PubMedGoogle Scholar
  12. 12.
    Khan, T., R.M. Havey, S.T. Sayers, A. Patwardhan, and W.W. King. 1999. Animal models of spinal cord contusion injuries. Laboratory Animal Science 49: 161–172.PubMedGoogle Scholar
  13. 13.
    Maharajh, G.S., E.A. Pascoe, W.C. Halliday, H.P. Grocott, D.B. Thiessen, L.G. Girling, M.S. Cheang, and W.A. Mutch. 1996. Neurological outcome in a porcine model of descending thoracic aortic surgery. Left atrial-femoral artery bypass versus clamp/repair. Stroke 27: 2095–2100.PubMedCrossRefGoogle Scholar
  14. 14.
    Panico, A.M., P. Vicini, G. Massimo, V. Cardile, B. Gentile, S. Avondo, F. Vittorio, and G. Ronsisvalle. 2004. Protective effects of benzisothiazolylamidines on IL-1 beta induced alterations in human articular chondrocyte metabolism. Inflammation 28: 231–235.PubMedCrossRefGoogle Scholar
  15. 15.
    Sanchez, C.P., and Y.Z. He. 2002. Alterations in the growth plate cartilage of rats with renal failure receiving corticosteroid therapy. Bone 30: 692–698.PubMedCrossRefGoogle Scholar
  16. 16.
    Yao, H.W., J. Li, J.Q. Chen, and S.Y. Xu. 2004. A 771726, the active metabolite of leflunomide, inhibits TNF-alpha and IL-1 from Kupffer cells. Inflammation 28: 97–103.PubMedCrossRefGoogle Scholar
  17. 17.
    Theodorou, V., J. Fioramonti, and L. Bueno. 1993. Recombinant interleukin-1 receptor antagonist protein prevents sensitization and intestinal anaphylaxis in guinea pigs. Life Sciences 53: 733–738.PubMedCrossRefGoogle Scholar
  18. 18.
    Fitch, M.T., C. Doller, C.K. Combs, G.E. Landreth, and J. Silver. 1999. Cellular and molecular mechanisms of glial scarring and progressive cavitation: In vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. Journal of Neuroscience 19: 8182–8198.PubMedGoogle Scholar
  19. 19.
    Rapalino, O., O. Lazarov-Spiegler, E. Agranov, G.J. Velan, E. Yoles, M. Fraidakis, A. Solomon, R. Gepstein, A. Katz, M. Belkin, M. Hadani, and M. Schwartz. 1998. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4: 814–821.PubMedCrossRefGoogle Scholar
  20. 20.
    Kamei, N., N. Tanaka, Y. Oishi, T. Hamasaki, K. Nakanishi, N. Sakai, and M. Ochi. 2007. BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures. Spine 32: 1272–1278.PubMedCrossRefGoogle Scholar
  21. 21.
    Sasaki, M., C. Radtke, A.M. Tan, P. Zhao, H. Hamada, K. Houkin, O. Honmou, and J.D. Kocsis. 2009. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. The Journal of Neuroscience 29: 14932–14941.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shaohui Zong
    • 1
  • Gaofeng Zeng
    • 2
  • Bo Wei
    • 2
  • Chunxiang Xiong
    • 3
  • Yuxi Zhao
    • 3
  1. 1.Department of Spine Osteopathia, the First Affiliated Hospital of Guangxi Medical UniversityNanningPeople’s Republic of China
  2. 2.College of Public Hygiene of Guangxi Medical UniversityNanningPeople’s Republic of China
  3. 3.Graduate School of Guangxi Medical UniversityNanningPeople’s Republic of China

Personalised recommendations