Inflammation

, Volume 34, Issue 6, pp 620–629

Luteolin Prevents LPS-Induced TNF-α Expression in Cardiac Myocytes Through Inhibiting NF-κB Signaling Pathway

Article

Abstract

Luteolin, a plant flavonoid, has been shown to suppress inflammatory responses; however, the mechanism of luteolin on cardiac myocyte inflammation is still unknown. Because tumor necrosis factor-α (TNF-α), an inflammatory cytokine, is elevated in the failing heart and exerts multiple potentially harmful effects on cardiac myocytes, we therefore sought to examine the effects of luteolin on the expression of TNF-α in neonatal rat cardiac myocytes. In the present study, enzyme-linked immunosorbent assay (ELISA), real-time PCR, immunoblot, immunochemistry staining, and electrophoretic mobility shift assays (EMSA) were performed. ELISA assay showed that luteolin decreased lipopolysaccharide (LPS)-induced production of TNF-α in the medium. Real-time PCR assay confirmed that luteolin also inhibited LPS-induced increase in TNF-α mRNA in myocytes. Furthermore, immunoblot and immunochemistry staining assays represented that luteolin blocked LPS-induced IκB-β degradation and NF-κB p65 subunit nuclear translocation. In addition, EMSA demonstrated that luteolin reduced LPS-induced NF-κB DNA binding activity. Luteolin protects against LPS-induced TNF-α expression via inhibition of the NF-κB signaling pathway, suggesting that luteolin may be a potential therapeutic agent for the treatment of inflammation-related myocardial diseases.

KEY WORDS

luteolin cardiac myocytes LPS TNF-α NF-κB signaling pathway 

ABBREVIATIONS

LPS

Lipopolysaccharide

TNF-α

Tumor necrosis factor-α

DMEM

Dulbecco’s modified Eagle’s medium

ELISA

Enzyme-linked immunosorbent assay

NF-κB

Nuclear factor-κB

PDTC

Pyrrolidine dithiocarbamate

EMSA

Electrophoretic mobility shift assays

Supplementary material

10753_2010_9271_MOESM1_ESM.tif (9.9 mb)
High resolution image (TIFF 10092 kb)

REFERENCES

  1. 1.
    Feldman, A.M., A. Combes, D. Wagner, T. Kadakomi, T. Kubota, Y.Y. Li, and C. McTiernan. 2000. The role of tumor necrosis factor in the pathophysiology of heart failure. Journal of the American College of Cardiology 35: 537–544.PubMedCrossRefGoogle Scholar
  2. 2.
    Meldrum, D.R. 1998. Tumor necrosis factor in the heart. The American Journal of Physiology 274: R577–R595.PubMedGoogle Scholar
  3. 3.
    Hickson-Bick, D.L., C. Jones, and L.M. Buja. 2006. The response of neonatal rat ventricular myocytes to lipopolysaccharide-induced stress. Shock 25: 546–552.PubMedCrossRefGoogle Scholar
  4. 4.
    Candelore, M.R., M.J. Wright, L.M. Tota, J. Milligan, G.J. Shei, J.D. Bergstrom, and S.M. Mandala. 2002. Phytosphingosine 1-phosphate: a high affinity ligand for the S1P(4)/Edg-6 receptor. Biochemical and Biophysical Research Communications 297: 600–606.PubMedCrossRefGoogle Scholar
  5. 5.
    Valen, G., Z.Q. Yan, and G.K. Hansson. 2001. Nuclear factor kappa-B and the heart. Journal of the American College of Cardiology 38: 307–314.PubMedCrossRefGoogle Scholar
  6. 6.
    Takeshita, A., H. Shinoda, Y. Nakabayashi, A. Takano, K. Matsumoto, M. Suetsugu, K. Miyazawa, S. Tanaka, H. Endo, S. Tanaka, Y. Ueyama, A. Hanzawa, Y. Suda, H. Kanegae, and T. Yasui. 2005. Sphingosine 1-phosphate acts as a signal molecule in ceramide signal transduction of TNF-alpha-induced activator protein-1 in osteoblastic cell line MC3T3-E1 cells. Journal of Oral Science 47: 43–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Jaffe, A.B., A. Hall, and A. Schmidt. 2005. Association of CNK1 with Rho guanine nucleotide exchange factors controls signaling specificity downstream of Rho. Current Biology 15: 405–412.PubMedCrossRefGoogle Scholar
  8. 8.
    Jennings, G.R., M.R. Castresana, and W.H. Newman. 2004. Regulation of tumor necrosis factor-alpha production in the isolated rat heart stimulated by bacterial lipopolysaccharide or reactive oxygen. The American Surgeon 70: 797–800.PubMedGoogle Scholar
  9. 9.
    Shimoi, K., H. Okada, M. Furugori, T. Goda, S. Takase, M. Suzuki, Y. Hara, H. Yamamoto, and N. Kinae. 1998. Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans. FEBS Letters 438: 220–224.PubMedCrossRefGoogle Scholar
  10. 10.
    Xagorari, A., A. Papapetropoulos, A. Mauromatis, M. Economou, T. Fotsis, and C. Roussos. 2001. Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. The Journal of Pharmacology and Experimental Therapeutics 296: 181–187.PubMedGoogle Scholar
  11. 11.
    Kotanidou, A., A. Xagorari, E. Bagli, P. Kitsanta, T. Fotsis, A. Papapetropoulos, and C. Roussos. 2002. Luteolin reduces lipopolysaccharide-induced lethal toxicity and expression of proinflammatory molecules in mice. American Journal of Respiratory and Critical Care Medicine 165: 818–823.PubMedGoogle Scholar
  12. 12.
    Kim, S.H., K.J. Shin, D. Kim, Y.H. Kim, M.S. Han, T.G. Lee, E. Kim, S.H. Ryu, and P.G. Suh. 2003. Luteolin inhibits the nuclear factor-kappa B transcriptional activity in Rat-1 fibroblasts. Biochemical Pharmacology 66: 955–963.PubMedCrossRefGoogle Scholar
  13. 13.
    Gutierrez-Venegas, G., P. Kawasaki-Cardenas, S.R. Arroyo-Cruz, and S. Maldonado-Frias. 2006. Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts. European Journal of Pharmacology 541: 95–105.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen, C.Y., W.H. Peng, K.D. Tsai, and S.L. Hsu. 2007. Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages. Life Sciences 81: 1602–1614.PubMedCrossRefGoogle Scholar
  15. 15.
    Wagner, D.R., A. Combes, C. McTiernan, V.J. Sanders, B. Lemster, and A.M. Feldman. 1998. Adenosine inhibits lipopolysaccharide-induced cardiac expression of tumor necrosis factor-alpha. Circulation Research 82: 47–56.PubMedGoogle Scholar
  16. 16.
    Fu, J.J., H. Gao, R.B. Pi, and P.Q. Liu. 2005. An optimized protocol for culture of cardiomyocyte from neonatal rat. Cytotechnology 49: 109–116.CrossRefGoogle Scholar
  17. 17.
    Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29: e45.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim, H.K., B.S. Cheon, Y.H. Kim, S.Y. Kim, and H.P. Kim. 1999. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochemical Pharmacology 58: 759–765.PubMedCrossRefGoogle Scholar
  19. 19.
    Jang, S., K.W. Kelley, and R.W. Johnson. 2008. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proceedings of the National Academy of Sciences of the United States of America 105: 7534–7539.PubMedCrossRefGoogle Scholar
  20. 20.
    Verma, I.M., J.K. Stevenson, E.M. Schwarz, D. Van Antwerp, and S. Miyamoto. 1995. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes & Development 9: 2723–2735.CrossRefGoogle Scholar
  21. 21.
    Wright, G., I.S. Singh, J.D. Hasday, I.K. Farrance, G. Hall, A.S. Cross, and T.B. Rogers. 2002. Endotoxin stress-response in cardiomyocytes: NF-kappaB activation and tumor necrosis factor-alpha expression. American Journal of Physiology. Heart and Circulatory Physiology 282: H872–H879.PubMedGoogle Scholar
  22. 22.
    Swantek, J.L., L. Christerson, and M.H. Cobb. 1999. Lipopolysaccharide-induced tumor necrosis factor-alpha promoter activity is inhibitor of nuclear factor-kappaB kinase-dependent. The Journal of Biological Chemistry 274: 11667–11671.PubMedCrossRefGoogle Scholar
  23. 23.
    Kim, J.S., and C. Jobin. 2005. The flavonoid luteolin prevents lipopolysaccharide-induced NF-kappaB signalling and gene expression by blocking IkappaB kinase activity in intestinal epithelial cells and bone marrow-derived dendritic cells. Immunology 115: 375–387.PubMedCrossRefGoogle Scholar
  24. 24.
    Comalada, M., I. Ballester, E. Bailon, S. Sierra, J. Xaus, J. Galvez, F.S. de Medina, and A. Zarzuelo. 2006. Inhibition of proinflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure-activity relationship. Biochemical Pharmacology 72: 1010–1021.PubMedCrossRefGoogle Scholar
  25. 25.
    Torre-Amione, G., S. Kapadia, J. Lee, J.B. Durand, R.D. Bies, J.B. Young, and D.L. Mann. 1996. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93: 704–711.PubMedGoogle Scholar
  26. 26.
    Haudek, S.B., E. Spencer, D.D. Bryant, D.J. White, D. Maass, J.W. Horton, Z.J. Chen, and B.P. Giroir. 2001. Overexpression of cardiac I-kappaBalpha prevents endotoxin-induced myocardial dysfunction. American Journal of Physiology. Heart and Circulatory Physiology 280: H962–H968.PubMedGoogle Scholar
  27. 27.
    Hall, G., J.D. Hasday, and T.B. Rogers. 2006. Regulating the regulator: NF-kappaB signaling in heart. Journal of Molecular and Cellular Cardiology 41: 580–591.PubMedCrossRefGoogle Scholar
  28. 28.
    Soo, I., K.L. Madsen, Q. Tejpar, B.C. Sydora, R. Sherbaniuk, B. Cinque, L. Di Marzio, M.G. Cifone, C. Desimone, and R.N. Fedorak. 2008. VSL#3 probiotic upregulates intestinal mucosal alkaline sphingomyelinase and reduces inflammation. Canadian Journal of Gastroenterology 22: 237–242.PubMedGoogle Scholar
  29. 29.
    Tormakangas, L., P. Vuorela, E. Saario, M. Leinonen, P. Saikku, and H. Vuorela. 2005. In vivo treatment of acute Chlamydia pneumoniae infection with the flavonoids quercetin and luteolin and an alkyl gallate, octyl gallate, in a mouse model. Biochemical Pharmacology 70: 1222–1230.PubMedCrossRefGoogle Scholar
  30. 30.
    Kang, O.H., J.G. Choi, J.H. Lee, and D.Y. Kwon. 2010. Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-kappaB and MAPKs activation pathways in HMC-1 cells. Molecules 15: 385–398.PubMedCrossRefGoogle Scholar
  31. 31.
    Li, X.Q., W. Cao, T. Li, A.G. Zeng, L.L. Hao, X.N. Zhang, and Q.B. Mei. 2009. Amlodipine inhibits TNF-alpha production and attenuates cardiac dysfunction induced by lipopolysaccharide involving PI3K/Akt pathway. International Immunopharmacology 9: 1032–1041.PubMedCrossRefGoogle Scholar
  32. 32.
    Takano, H., T. Nagai, M. Asakawa, T. Toyozaki, T. Oka, I. Komuro, T. Saito, and Y. Masuda. 2000. Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-alpha expression in neonatal rat cardiac myocytes. Circulation Research 87: 596–602.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PharmacyShaoyang Medical CollegeShaoyangChina
  2. 2.The First Affiliated HospitalSun Yat-sen UniversityGuangzhouChina
  3. 3.Sixth Branch of Internal MedicineShaoyang Center HospitalShaoyangChina
  4. 4.Fourth District of ChemotherapySun Yat-sen University Cancer CenterGuangzhouChina

Personalised recommendations