Inflammation

, Volume 34, Issue 6, pp 559–567

Radon Inhalation Protects Mice from Carbon-Tetrachloride-Induced Hepatic and Renal Damage

  • Takahiro Kataoka
  • Yuichi Nishiyama
  • Teruaki Toyota
  • Masaaki Yoshimoto
  • Akihiro Sakoda
  • Yuu Ishimori
  • Yutaka Aoyama
  • Takehito Taguchi
  • Kiyonori Yamaoka
Article

Abstract

We assessed whether radon inhalation provided protection from carbon tetrachloride (CCl4)-induced hepatic and renal damage in mice. Mice were subjected to intraperitoneal injection of CCl4 after inhaling approximately 18 kBq/m3 radon for 6 h. Radon inhalation significantly increased total glutathione (t-GSH) content and glutathione peroxidase (GPx) activity in the liver and kidney. Injection of CCl4 was associated with significantly higher levels of glutamic oxaloacetic transaminase (GOT) and alkaline phosphatase (ALP) activity and creatinine level in serum, and pretreatment with radon significantly decreased the GOT and ALP activity and creatinine level associated with CCl4 injection, suggesting that radon inhalation alleviates CCl4-induced hepatic and renal damage. The t-GSH contents and GPx activity in the liver and kidney of animals pretreated with radon were significantly higher than those of the CCl4-only group. These findings suggested that radon inhalation activated antioxidative functions and inhibited CCl4-induced hepatic and renal damage in mice.

KEY WORDS

radon inhalation carbon tetrachloride antioxidative function liver kidney 

References

  1. 1.
    Recknagel, R.O., and A.K. Ghoshal. 1966. Lipoperoxidation as a vector in carbon tetrachloride hepatotoxicity. Laboratory Investigation 15: 132–148.PubMedGoogle Scholar
  2. 2.
    Durk, H., and H. Frank. 1984. Carbon tetrachloride metabolism in vivo and exhalation of volatile alkanes: dependence upon oxygen parital pressure. Toxicology 30: 249–257.PubMedCrossRefGoogle Scholar
  3. 3.
    Rikans, L.E., K.R. Hornbrook, and Y. Cai. 1994. Carbon tetrachloride hepatotoxicity as a function of age in female Fischer 344 rats. Mechanisms of Ageing and Development 76: 89–99.PubMedCrossRefGoogle Scholar
  4. 4.
    Tirkey, N., S. Pilkhwal, A. Kuhad, and K. Chopra. 2005. Hesperidin, a citrus bioflavonoid, decreases the oxidative stress produced by carbon tetrachloride in rat liver and kidney. BMC Pharmacol 5: 2.PubMedCrossRefGoogle Scholar
  5. 5.
    Ahmad, F.F., D.L. Cowan, and A.Y. Sun. 1987. Detection of free radical formation in various tissues after acute carbon tetrachloride administration in gerbil. Life Sciences 41: 2469–2475.PubMedCrossRefGoogle Scholar
  6. 6.
    Ozturk, F., M. Ucar, I.C. Ozturk, N. Vardi, and K. Batcioglu. 2003. Carbon tetrachloride-induced nephrotoxicity and protective effect of betaine in Sprague-Dawley rats. Urology 62: 353–356.PubMedCrossRefGoogle Scholar
  7. 7.
    Kuzu, N., K. Metin, A.F. Dagli, F. Akdemir, C. Orhan, M. Yalniz, I.H. Ozercan, K. Sahin, and I.H. Bahcecioglu. 2007. Protective role of genistein in acute liver damage induced by carbon tetrachloride. Mediators of Inflammation 2007: 36381.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee, K.J., J.H. Choi, T. Khanal, Y.P. Hwang, Y.C. Chung, and H.G. Jeong. 2008. Protective effect of caffeic acid phenethyl ester against carbon tetrachloride-induced hepatotoxicity in mice. Toxicology 2248: 18–24.CrossRefGoogle Scholar
  9. 9.
    Kataoka, T., M. Yoshimoto, S. Nakagawa, Y. Mizuguchi, T. Taguchi, and K. Yamaoka. 2009. Basic study on active changes in biological function of mouse liver graft in cold storage after low-dose X-irradiation. Journal of Clinical Biochemistry and Nutrition 45: 219–226.PubMedCrossRefGoogle Scholar
  10. 10.
    Kojima, S., O. Matsuki, I. Kinoshita, T.V. Gonzalez, N. Shimura, and A. Kubodera. 1997. Dose small-dose γ-ray radiation induce endogenous antioxidant potential in vivo? Biological & Pharmaceutical Bulletin 20: 601–604.CrossRefGoogle Scholar
  11. 11.
    Yamaoka, K., S. Kojima, M. Takahashi, T. Nomura, and K. Iriyama. 1998. Change of glutathione peroxidase synthesis along with that of superoxide dismutase synthesis in mice spleen after low-dose X-ray irradiation. Biochem. Biophys. Acta. 1381: 265–270.PubMedCrossRefGoogle Scholar
  12. 12.
    Yamaoka, K., S. Kojima, and T. Nomura. 1999. Changes of SOD-like substances in mouse organs after low-dose X-ray irradiation. Physiological Chemistry and Physics and Medical NMR 31: 23–28.PubMedGoogle Scholar
  13. 13.
    Yamaoka, K., R. Edamatsu, and A. Mori. 1991. Increased SOD activities and decreased lipid peroxide levels induced by low dose X irradiation in rat organs. Free Radical Biology & Medicine 11: 299–306.CrossRefGoogle Scholar
  14. 14.
    Kojima, S., K. Nakayama, and H. Ishida. 2004. Low dose gamma-rays activate immune functions via induction of glutathione and delay tumor growth. Journal of Radiation Research 45: 33–39.PubMedCrossRefGoogle Scholar
  15. 15.
    Ishii, K., K. Yamaoka, Y. Hosoi, T. Ono, and K. Sakamoto. 1995. Enhanced mitogen-induced proliferation of rat splenocytes by low-dose whole-body X-irradiation. Physiological Chemistry and Physics and Medical NMR 27: 17–23.PubMedGoogle Scholar
  16. 16.
    Martensson, J., A. Jain, E. Stole, W. Frayer, P.A.M. Auld, and A. Meister. 1991. Induction of glutathione synthesis in the new born rat: a model of endogenously produced oxidative stress. Proceedings of the National Academy of Sciences of the United States of America 88: 9360–9364.PubMedCrossRefGoogle Scholar
  17. 17.
    Yamaoka, K., T. Kataoka, T. Nomura, T. Taguchi, Da-Hong Wang, S. Mori, K. Hanamoto, and S. Kira. 2004. Inhibitory effects of prior low-dose irradiation on carbon tetrachloride-induced hepatopathy in acatalasemic mice. Journal of Radiation Research 45: 89–95.PubMedCrossRefGoogle Scholar
  18. 18.
    Kataoka, T., T. Nomura, D.H. Wang, T. Taguchi, and K. Yamaoka. 2005. Effects of post low-dose X-ray irradiation on carbon tetrachloride-induced acatalasemic mice liver damage. Physiological Chemistry and Physics and Medical NMR 37: 109–126.PubMedGoogle Scholar
  19. 19.
    Yamaoka, K. 2006. Activation of antioxidant system by low dose radiation and its applicable possibility for treatment of reactive oxygen species-related diseases. Journal of Clinical Biochemistry and Nutrition 39: 114–133.CrossRefGoogle Scholar
  20. 20.
    Kataoka, T., Y. Mizuguchi, M. Yoshimoto, T. Taguchi, and K. Yamaoka. 2007. Inhibitory effects of prior low-dose X-irradiation on ischemia-reperfusion injury in mouse paw. Journal of Radiation Research 48: 505–513.PubMedCrossRefGoogle Scholar
  21. 21.
    Tsuruga, M., K. Taki, G. Ishii, Y. Sasaki, C. Furukawa, T. Sugihara, T. Nomura, A. Ochiai, and J. Magae. 2007. Amelioration of type II diabetes in db/db mice by continuous low-dose-rate gamma irradiation. Radiation Research 167: 592–599.PubMedCrossRefGoogle Scholar
  22. 22.
    Nomura, T., and K. Yamaoka. 1999. Low-dose γ-ray irradiation reduces oxidative damage induced by CCl4 in mouse liver. Free Radical Biology & Medicine 27: 1324–1333.CrossRefGoogle Scholar
  23. 23.
    Yamaoka, K., F. Mitsunobu, K. Hanamoto, S. Mori, Y. Tanizaki, and K. Sugita. 2004. Study on biologic effects of radon and thermal therapy on osteoarthritis. The Journal of Pain 5: 20–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Mitsunobu, F., K. Yamaoka, K. Hanamoto, S. Kojima, Y. Hosaki, K. Ashida, K. Sugita, and Y. Tanizaki. 2003. Elevation of antioxidant enzymes in the clinical effects of radon and thermal therapy for bronchial asthma. Journal of Radiation Research 44: 95–99.PubMedCrossRefGoogle Scholar
  25. 25.
    Nakagawa, S., T. Kataoka, A. Sakoda, Y. Ishimori, K. Hanamoto, and K. Yamaoka. 2008. Basic study on activation of antioxidation function in some organs of mice by radon inhalation using new radon exposure device. Radioisotopes 57: 241–251 (in Japanese).CrossRefGoogle Scholar
  26. 26.
    Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.PubMedCrossRefGoogle Scholar
  27. 27.
    Ooshima, Y. 1996. System of current internal medicine II, 124–144. Tokyo: Nakayama Shoten.Google Scholar
  28. 28.
    Komoto, Y., T. Kohmoto, T. Nakao, M. Sunakawa, and H. Yorozu. 1988. Tissue perfusion with perfusion with CO2. Z phys Med Balneol med Klimatol 17: 72–78.Google Scholar
  29. 29.
    Suzuka, I., K. Yamaoka, and Y. Komoto. 1991. Adrenal secretion of catecholamines by inhalation of radon water in relation to an increase of the tissue perfusion rate in rabbit. J Jpn Coll Angiol 31: 1182.Google Scholar
  30. 30.
    Meister, A., and M.E. Anderson. 1983. Glutathione. Annual Review of Biochemistry 52: 711–760.PubMedCrossRefGoogle Scholar
  31. 31.
    Burk, R.F., K. Patel, and J.M. Lane. 1983. Reduced glutathione protection against rat liver microsomal injury by carbon tetrachloride Dependence on O2. The Biochemical Journal 215: 441–445.PubMedGoogle Scholar
  32. 32.
    Manibusan, M.K., M. Odin, and D.A. Eastmond. 2007. Postulated carbon tetrachloride mode of action: a review. Journal of Environmental Science and Health. Part C: Environmental Carcinogenesis & Ecotoxicology Reviews 25: 185–209.Google Scholar
  33. 33.
    Ogeturka, M., I. Kusa, N. Colakoglub, I. Zararsiza, N. Ilhanc, and M. Sarsilmaza. 2005. Caffeic acid phenethyl ester protects kidneys against carbon tetrachloride toxicity in rats J. Ethnopharmacol 97: 273–280.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Takahiro Kataoka
    • 1
  • Yuichi Nishiyama
    • 1
  • Teruaki Toyota
    • 1
  • Masaaki Yoshimoto
    • 1
  • Akihiro Sakoda
    • 1
  • Yuu Ishimori
    • 2
  • Yutaka Aoyama
    • 1
  • Takehito Taguchi
    • 1
  • Kiyonori Yamaoka
    • 1
  1. 1.Graduate School of Health SciencesOkayama UniversityOkayamaJapan
  2. 2.Ningyo-toge Environmental Engineering CenterJapan Atomic Energy AgencyOkayamaJapan

Personalised recommendations