Inflammation

, Volume 34, Issue 5, pp 471–486

Comparison of Pulmonary Inflammatory and Antioxidant Responses to Intranasal Live and Heat-Killed Streptococcus pneumoniae in Mice

  • Miroslava Dominis-Kramari
  • Martina Bosnar
  • Željko Kelneri
  • Ines Glojnari
  • Snježana Čuži
  • Michael J. Parnham
  • Vesna Erakovi Haber
Article

Abstract

Inflammatory and antioxidant responses, in male C57Bl6J mice, to single intranasal inoculations with live or heat-killed Streptococcus pneumoniae were studied in order to tease out differences in responses. Heat-killed bacteria elicited weak lung neutrophil infiltration and raised concentrations (peak 6–8 h), in serum or lung tissue, of CXCL1 and 2, tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and granulocyte-macrophage-colony stimulating factor, with later increases in CCL2 and IL-1β. Live bacteria induced profound pulmonary neutrophil infiltration and acute chemokine/cytokine elevations. After 72–96 h, live S. pneumoniae induced a delayed rise in chemokines CXCL2 and CCL2, preceded by increases in TNFα, IL-1β, and IL-6 and mononuclear infiltration of lungs. With both live and heat-killed bacteria, alveolar epithelial type II cells and alveolar macrophages were the main sources of TNFα and IL-1β. Only live bacteria caused an acute decrease in lung glutathione peroxidase, an increase in superoxide dismutase, and a sustained increase in serum amyloid protein A. Acute innate immune responses to live and heat-killed S. pneumoniae are similar. In response to live bacteria, inflammation is greater, accompanied by changes in antioxidant enzymes and has an additional, later mononuclear component.

KEY WORDS

S. pneumoniae infection murine lung inflammation pro-inflammatory cytokines antioxidant enzymes 

References

  1. 1.
    Lode, H.M. 2007. Managing community-acquired pneumonia: A European perspective. Respiratory Medicine 101: 1864–1873.PubMedCrossRefGoogle Scholar
  2. 2.
    Carbonara, S., L. Monno, B. Longo, and G. Angarano. 2009. Community-acquired pneumonia. Current Opinion in Pulmonary Medicine 15: 261–273.PubMedCrossRefGoogle Scholar
  3. 3.
    Lynch 3rd, J.P., and G.G. Zhanel. 2009. Streptococcus pneumoniae: Does antimicrobial resistance matter? Seminars in Respiratory and Critical Care Medicine 30: 210–238.PubMedCrossRefGoogle Scholar
  4. 4.
    Amsden, G.W. 2005. Anti-inflammatory effects of macrolides—An underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? The Journal of Antimicrobial Chemotherapy 55: 10–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Bergeron, Y., N. Ouellet, A.-M. Deslauriers, M. Simard, M. Olivier, and M.G. Bergeron. 1998. Cytokine kinetics and other host factors in response to pneumococcal pulmonary infection in mice. Infection and Immunity 66: 912–922.PubMedGoogle Scholar
  6. 6.
    Wang, E., N. Ouellet, M. Simard, I. Fillion, Y. Bergeron, D. Beauchamp, and M.G. Bergeron. 2001. Pulmonary and systemic host response to Streptococcus pneumoniae and Klebsiella pneumoniae bacteremia in normal and immunosuppressed mice. Infection and Immunity 69: 5294–5304.PubMedCrossRefGoogle Scholar
  7. 7.
    Fillion, I., N. Ouellet, M. Simard, Y. Bergeron, S. Sato, and M.G. Bergeron. 2001. Role of chemokines and formyl peptides in pneumococcal pneumonia-induced monocyte/macrophage recruitment. Journal of Immunology 166: 7353–7361.Google Scholar
  8. 8.
    Bergeron, Y., N. Ouellet, A.-M. Deslauriers, M. Simard, M. Olivier, and M.G. Bergeron. 1998. Reduction by cefodizime of the pulmonary inflammatory response induced by heat-killed Streptococcus pneumoniae in mice. Antimicrobial Agents and Chemotherapy 42: 2527–2533.PubMedGoogle Scholar
  9. 9.
    Duong, M., M. Simard, Y. Bergeron, N. Ouellet, M. Côté-Richer, and M.G. Bergeron. 1998. Immunomodulating effects of HMR 3004 on pulmonary inflammation caused by heat-killed Streptococcus pneumoniae in mice. Antimicrobial Agents and Chemotherapy 42: 3309–3312.PubMedGoogle Scholar
  10. 10.
    Mizgerd, J.P. 2002. Molecular mechanisms of neutrophil recruitment elicited by bacteria in the lungs. Immunology 14: 123–132.Google Scholar
  11. 11.
    Pan, L.-H., H. Ohtani, K. Yamauchi, and H. Nagura. 1996. Co-expression of TNFα and IL-1β in human acute pulmonary fibrotic diseases: An immunohistochernical analysis. Pathology Interactive 46: 91–99.CrossRefGoogle Scholar
  12. 12.
    Gauthier, J.-F., A. Fortin, Y. Bergeron, M.-C. Dumas, M.-E. Champagne, and M.G. Bergeron. 2007. Differential contribution of bacterial N-formyl-methionyl-leucyl-phenylalanine and host-derived CXC chemokines to neutrophil infiltration into pulmonary alveoli during murine pneumococcal pneumonia. Infection and Immunity 75: 5361–5367.PubMedCrossRefGoogle Scholar
  13. 13.
    Park, J.H., Y.G. Kim, M. Shaw, T.D. Kanneganti, Y. Fujimoto, K. Fukase, N. Inohara, and G. Núñez. 2007. Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. Journal of Immunology 179: 514–521.Google Scholar
  14. 14.
    Dhanireddy, S., W.A. Altemeier, G. Matute-Bello, D.S. O’Mahony, R.W. Glenny, T.R. Martin, and W.C. Liles. 2006. Mechanical ventilation induces inflammation, lung injury, and extra-pulmonary organ dysfunction in experimental pneumonia. Laboratory Investigation 86: 790–799.PubMedCrossRefGoogle Scholar
  15. 15.
    Santos-Sierra, S., D.T. Golenbock, and P. Henneke. 2006. Toll-like receptor-dependent discrimination of streptococci. Journal of Endotoxin Research 12: 307–312.PubMedGoogle Scholar
  16. 16.
    Mogensen, T.H. 2009. Pathogen recognition and inflammatory signaling in innate immune defenses. Clinical Microbiology Reviews 22: 240–273.PubMedCrossRefGoogle Scholar
  17. 17.
    Tokairin, Y., Y. Shibata, M. Sata, S. Abe, N. Takabatake, A. Igarashi, T. Ishikawa, S. Inoue, and I. Kubota. 2008. Enhanced immediate inflammatory response to Streptococcus pneumoniae in the lungs of mice with pulmonary emphysema. Respirology 13: 324–332.PubMedCrossRefGoogle Scholar
  18. 18.
    Bosnar, M., B. Bošnjak, S. Čuži, B. Hrvači, N. Marjanovi, I. Glojnari, O. Čuli, M.J. Parnham, and V. Erakovi Haber. 2009. Azithromycin and clarithromycin inhibit lipopolysaccharide-induced murine pulmonary neutrophilia mainly through effects on macrophage-derived GM-CSF and IL-1β. The Journal of Pharmacology and Experimental Therapeutics 331: 104–113.PubMedCrossRefGoogle Scholar
  19. 19.
    Mogensen, T.H., S.R. Paludan, M. Kilian, and L. Ostergaard. 2006. Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response through toll-like receptors 2, 4, and 9 in species-specific patterns. J Leukoc Biol 80: 267–77.PubMedCrossRefGoogle Scholar
  20. 20.
    Albiger, B., S. Dahlberg, A. Sandgren, F. Wartha, K. Beiter, H. Katsuragi, S. Akira, S. Normark, and B. Henriques-Normark. 2007. Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection. Cellular Microbiology 9: 633–644.PubMedCrossRefGoogle Scholar
  21. 21.
    Knapp, S., C.W. Wieland, C. van ’t Veer, O. Takeuchi, S. Akira, S. Florquin, and T. van der Poll. 2004. Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense. Journal of Immunology 172: 3132–3138.Google Scholar
  22. 22.
    Nakayama, T., S. Sonoda, T. Urano, T. Yamada, and M. Okada. 1993. Monitoring both serum amyloid protein A and C-reactive protein as inflammatory markers in infectious diseases. Clinical Chemistry 39: 293–297.PubMedGoogle Scholar
  23. 23.
    Dallaire, F., N. Ouellet, Y. Bergeron, V. Turmel, M.-C. Gauthier, M. Simard, and M.G. Bergeron. 2001. Microbiological and inflammatory factors associated with the development of pneumococcal pneumonia. The Journal of Infectious Diseases 184: 292–300.PubMedCrossRefGoogle Scholar
  24. 24.
    Winter, C., K. Taut, M. Srivastava, F. Länger, M. Mack, D.E. Briles, J.C. Paton, R. Maus, T. Welte, M.D. Gunn, and U.A. Maus. 2007. Lung-specific overexpression of CC chemokine ligand (CCL) 2 enhances the host defense to Streptococcus pneumoniae infection in mice: Role of the CCL2-CCR2 axis. Journal of Immunology 178: 5828–5838.Google Scholar
  25. 25.
    Martner, A., C. Dahlgren, J.C. Paton, and A.E. Wold. 2008. Pneumolysin released during Streptococcus pneumoniae autolysis is a potent activator of intracellular oxygen radical production in neutrophils. Infection and Immunity 76: 4079–4087.PubMedCrossRefGoogle Scholar
  26. 26.
    Zang, Q., D.L. Maass, S.J. Tsai, and J.W. Horton. 2007. Cardiac mitochondrial damage and inflammation responses in sepsis. Surgical Infection (Larchmt.) 8: 41–54.CrossRefGoogle Scholar
  27. 27.
    Tan, R.J., J.S. Lee, M.L. Manni, C.L. Fattman, J.M. Tobolewski, M. Zheng, J.K. Kolls, T.R. Martin, and T.D. Oury. 2006. Inflammatory cells as a source of airspace extracellular superoxide dismutase after pulmonary injury. American Journal of Respiratory Cell and Molecular Biology 34: 226–232.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Miroslava Dominis-Kramari
    • 1
  • Martina Bosnar
    • 1
  • Željko Kelneri
    • 1
  • Ines Glojnari
    • 1
  • Snježana Čuži
    • 1
  • Michael J. Parnham
    • 1
  • Vesna Erakovi Haber
    • 1
  1. 1.GlaxoSmithKline Research Centre Zagreb LtdZagrebCroatia

Personalised recommendations