Inflammation

, Volume 34, Issue 3, pp 184–192

A Role of Piperine on Monosodium Urate Crystal-Induced Inflammation—An Experimental Model of Gouty Arthritis

  • Evan Prince Sabina
  • Shruthi Nagar
  • Mahaboobkhan Rasool
Article

Abstract

In the present study, the anti-inflammatory effect of piperine was investigated on monosodium urate crystal-induced inflammation in mice, an experimental model for gouty arthritis, and compared it with that of the nonsteroidal anti-inflammatory drug, indomethacin. The levels of lysosomal enzymes, lipid peroxidation, tumor necrosis factor-α, and paw volume were increased significantly, and the activities of antioxidant status were in turn decreased in monosodium urate crystal-induced mice, whereas these changes were reverted to near normal levels upon piperine (30 mg/kg b.wt, i.p.) treatment. In vitro, piperine (50/100 ug/ml) suppressed the level of β-glucuronidase and lactate dehydrogenase in monosodium urate crystal-incubated polymorphonuclear leucocytes in concentration-dependent manner when compared to control cells. Thus, the present study clearly indicated that piperine inhibit the monosodium urate crystal-induced inflammation and can be regarded as therapeutic drug for the treatment of acute gouty arthritis.

KEY WORDS

piperine, gouty arthritis indomethacin lysosomal enzymes polymorphonuclear leucocytes tumor necrosis factor-α 

References

  1. 1.
    Agudelo, C.A., and C.M. Wise. 2001. Gout: Diagnosis, pathogenesis, and clinical manifestations. Current Opinion in Rheumatology 13: 234–239.PubMedCrossRefGoogle Scholar
  2. 2.
    Schumacher Jr., H.R. 1996. Crystal-induced arthritis: An overview. The American Journal of Medicine 100: 46S–52S.PubMedCrossRefGoogle Scholar
  3. 3.
    Terkelaub, R.A. 2001. Pathogenesis and treatment of crystal-induced inflammation. In Arthritis and allied conditions, 14th ed, ed. W.J. Koopman, 2329–2347. Philadelphia: Lippincott William & Wilkins.Google Scholar
  4. 4.
    Terkeltaub, R.A., and M.H. Ginsberg. 1988. The inflammatory reaction to crystals. Rheumatic Diseases Clinics of North America 14: 53–64.Google Scholar
  5. 5.
    Di Giovine, F.S., S.E. Malawista, E. Thornton, and G.W. Duff. 1991. Urate crystals stimulate production of tumour necrosis factor alpha from human blood monocytes and synovial cells: Cytokine mRNA and protein kinetics, and cellular distribution. The Journal of Clinical Investigation 87: 175–181.Google Scholar
  6. 6.
    Terkeltaub, R. 2004. Pathogenesis and treatment of crystal-induced inflammation. In Arthritis and allied conditions, ed. W.J. Koopman and L.W. Moreland, 2357–2372. Philadelphia, Lippincott: Williams and Wilkins.Google Scholar
  7. 7.
    Govindarajan, V.S. 1982. Ginger—chemistry technology and quality evaluation: Part 1 CRC. Critical Reviews in Food Science & Nutrition 17: 1–96.CrossRefGoogle Scholar
  8. 8.
    Pradeep, C.R., and G. Kuttan. 2004. Piperine is a potent inhibitor of nuclear factor-kappaB (NF-kappaB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. International Immunopharmacology 4: 1795–1803.PubMedCrossRefGoogle Scholar
  9. 9.
    Panda, S., and A. Kar. 2003. Piperine lowers the serum concentrations of thyroid hormones, glucose, hepatic 5’D activity in adult male mice. Hormone and Metabolic Research 35: 523.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee, S.A., S.S. Hong, and X.H. Han. 2005. Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and anti-depressant like activity. Chemical &Pharmaceutical Bulletin 53: 832.CrossRefGoogle Scholar
  11. 11.
    Koul, I.B., and A. Kapil. 1993. Evaluation of the liver protective potential of piperine, an active principle of black and white peppers. Planta Medica 59: 413.PubMedCrossRefGoogle Scholar
  12. 12.
    Sunila, E.S., and G. Kuttan. 2004. Immunomodulatory and anti-tumour activity of Piper longum Linn, and piperine. Journal of Ethanopharmacology 90: 339.CrossRefGoogle Scholar
  13. 13.
    Singh, Y.N., and N.N. Singh. 2002. Therapeutic potential of kava in the treatment of anxiety disorders. CNS Drugs 16: 731–743.PubMedCrossRefGoogle Scholar
  14. 14.
    Pathak, N., and S. Khandelwal. 2006. Modulation of cadmium-induced alterations in murine thymocytes by piperine: Oxidative stress, apoptosis, phenotyping and blastogenesis. Biochemical Pharmacology 72: 486–497.PubMedCrossRefGoogle Scholar
  15. 15.
    Bang, J.S., D.H. Oh, H.M. Choi, B.J. Sur, S.L. Lim, J.Y. Kim, H.I. Yang, M.C. Yoo, D.H. Hahm, and K.S. Kim. 2009. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Research & Therapy 11: R49.CrossRefGoogle Scholar
  16. 16.
    Rasool, M., and P. Varalakshmi. 2006. Suppressive effect of Withania somnifera root powder on MSU crystal-induced inflammation—an in vivo and in vitro study. Chemico-Biological Interactions 164(3): 174–180.PubMedCrossRefGoogle Scholar
  17. 17.
    King, J. 1965. The hydrolases—acid and alkaline phosphatases. In Practical clinical enzymology, ed. D. Van, 191–208. London: Nostrand Company Limited.Google Scholar
  18. 18.
    Kawai, Y., and K. Anno. 1971. Mucopolysaccharide-degrading enzymes from the liver of the squad, Ommastrephes slonaipacificus. I. Hyaluronidase. Biochimica et Biophysica Acta 242: 428–436.PubMedGoogle Scholar
  19. 19.
    Rosenblit, P.D., R.P. Metzyer, and A.N. Wick. 1974. Effect of Streptozotocin diabetes on acid phosphatase and selected glycosidase activities of serum and various rat organs. Proceedings of the Society for Experimental and Biological Medicine 145: 244–247.Google Scholar
  20. 20.
    Marhun, D. 1976. Rapid colorimetric assay of β-galactosidase and N-acetyl-β-galactosaminidase in human urine. Clinica Chimica Acta 73: 453–461.CrossRefGoogle Scholar
  21. 21.
    Lowry, O.H., N.J. Rosebrough, A.I. Farr, and R.J. Randall. 1951. Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry 193: 265–275.PubMedGoogle Scholar
  22. 22.
    Ledwozyw, A., J. Michalak, A. Stepien, and A. Kadziolka. 1986. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clinica Chimica Acta 155: 275–284.CrossRefGoogle Scholar
  23. 23.
    Hogberg, J., R.E. Larson, A. Kristoferson, and S. Orrenius. 1974. NADPH-dependent reductase solubilised from microsomes of peroxidation and its activity. Biochemical and Biophysical Research Communications 56: 836–842.PubMedCrossRefGoogle Scholar
  24. 24.
    Marklund, S.L., and G. Marklund. 1974. Involvement of superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47: 469–474.PubMedCrossRefGoogle Scholar
  25. 25.
    Sinha, A.K. 1972. Colorimetric assay of catalase. Analytical Biochemistry 47: 389–394.PubMedCrossRefGoogle Scholar
  26. 26.
    Rotruk, J.T., A.L. Pope, H.E. Ganther, A.B. Swanson, D.G. Hafeman, and W.G. Hekstra. 1973. Selenium, biochemical role as a component of glutathione peroxidase purification and assay. Science 179: 588–590.CrossRefGoogle Scholar
  27. 27.
    King, J. 1965. The dehydrogenase or oxidoreductase-lactate dehydrogenase. In Practical clinical enzymology, ed. D. Van, 83–93. London: Nostrand.Google Scholar
  28. 28.
    Kramer, H.M., and G. Curhan. 2002. The association between gout and nephrolithiasis: The national health and nutrition examination survey III, 1988–1994. American Journal of Kidney Diseases 40: 37–42.PubMedCrossRefGoogle Scholar
  29. 29.
    Saflna, A., T. Korolenko, G. Mynkina, M. Dushkin, and G. Krasnoselskaya. 1992. Liver and serum lysosomal enzymes activity during zymosan-induced inflammation in mice. Agents and Actions 38(3): 370–375.Google Scholar
  30. 30.
    Ramprasad, V.R., P. Shanthi, and P. Sachdanandam. 2005. Evaluation of antioxidant effect of Semecarpus anacardium Linn. nut extract on thecomponents of immune system in adjuvant arthritis. Vascular Pharmacology 42: 179–186.CrossRefGoogle Scholar
  31. 31.
    Dhully, J.N., P.H. Raman, A.M. Mujumdar, and S.R. Naik. 1993. Inhibition of lipid peroxidation by piperine during experimental inflammation in rats. Indian Journal of Experimental Biology 31: 443–5.Google Scholar
  32. 32.
    Srinivasan, K. 2007. Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Critical Reviews in Food Science & Nutrition 47: 735–748.CrossRefGoogle Scholar
  33. 33.
    Selvendiran, K., P.V. Singh, and K. Baba Krishnan. 2003. Cytoprotective effect of piperine against benzo(a)pyrene induced lung cancer with reference to lipid peroxidation and antioxidant system in Swiss albino mice. Fitoterapia 74: 109–115.PubMedCrossRefGoogle Scholar
  34. 34.
    Di Giovine, F.S., G. Nuki, and G.W. Duff. 1988. Tumour necrosis factor in synovial exudates. Annals of the Rheumatic Diseases 47: 768–772.PubMedCrossRefGoogle Scholar
  35. 35.
    Abramson, S., S.T. Hoffstein, and G. Weissmann. 1982. Superoxide anion generation by human neutrophils exposed to monosodium urate. Arthritis and Rheumatism 25: 174–180.PubMedCrossRefGoogle Scholar
  36. 36.
    Liu Bryan, R., and R. Terkeltaub. 2006. Evil humors take their toll as innate immunity makes gouty joints TREM-ble. Arthritis and Rheumatism 54: 383–386.PubMedCrossRefGoogle Scholar
  37. 37.
    Wallingford, W.R., and D.T. McCarty. 1971. Differential membronolytic effects of sodium urate and calcium pyro phosphate dihydrate crystals. The Journal of Experimental Medicine 133: 100.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Evan Prince Sabina
    • 1
  • Shruthi Nagar
    • 1
  • Mahaboobkhan Rasool
    • 1
  1. 1.School of Bio Sciences and TechnologyVIT UniversityVelloreIndia

Personalised recommendations