, Volume 34, Issue 3, pp 147–160 | Cite as

Oral Administration of 2-Docosahexaenoyl Lysophosphatidylcholine Displayed Anti-Inflammatory Effects on Zymosan A-Induced Peritonitis

  • Nguyen Dang Hung
  • Mee Ree Kim
  • Dai-Eun SokEmail author


Lysophosphatidylcholines (lysoPCs) have been known to be bioactive lipid mediators, which take part in various biological and pathological processes. In the present study, we examined the anti-inflammatory actions of 2-docosahexaenoyl lysophosphatidylcholine (2-docosahexaenoyl-lysoPC) in vitro as well as in vivo systems. When RAW 264.7 cells were treated with 2-docoshexaenoyl-lysoPC, a concentration-dependent decrease of LPS-induced formation of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), or IL-6 was observed. Additionally, oral administration of 2-docosahexaenoyl-lysoPC was found to inhibit zymosan A-induced plasma leakage dose-dependently in mice with ED50 value of 50 μg/kg and E max value of about 65%. Moreover, mechanistic study revealed that the anti-inflammatory action of 2-docosahexaenoyl-lysoPC seemed to be related largely to LTC4 inhibition, but not PGE2 inhibition. Moreover, 2-(17-hydroperoxydocosahexaneoyl)-lysoPC, intravenously administrated, was more effective than 2-docosahexaenoyl-lysoPC in the inhibition of zymosan A-induced plasma leakage, suggesting that 2-(17-hydroperoxydocosahexaneoyl)-lysoPC, a product from oxygenation of 2-docosahexaenoyl-lysoPC by 15-lipoxygenase (LOX), may be an active metabolite, intimately responsible for anti-inflammatory actions, generated from 2-docosahexaenoyl-lysoPC. In a related study, 2-docosahexaenoyl-lysoPC was found to be more efficient than 1-docosahexaenoyl-lysoPC or docosahexaenoic acid (DHA) as substrate for 15-lipoxygenases such as soybean LOX-1, leukocyte 12/15-LOX, and human 15-LOX-2. Taken altogether, it is suggested that 2-docosahexaenoyl-lysoPC and its oxygenation products may exert anti-inflammatory action after oral administration.


anti-inflammatory 2-docosahexaenoyl-lysoPC zymosan A nitric oxide LTC4 PGE2 RAW 264.7 cell 



docosahexaenoic acid


17-hydroxydocoxahexaenoic acid












50% effective dose


phospholipase A2


leukotriene C4


prostaglandin E2




tumor necrosis factor alpha


nitric oxide



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF 2009-0069242).


  1. 1.
    Serhan, C.N., and J. Savill. 2005. Resolution of inflammation: The beginning programs the end. Nature Immunology 6: 1191–1197.PubMedCrossRefGoogle Scholar
  2. 2.
    Levy, B.D., C.B. Clish, B. Schmidt, K. Gronert, and C.N. Serhan. 2001. Lipid mediator class switching during acute inflammation: Signals in resolution. Nature Immunology 2(7): 612–619.PubMedCrossRefGoogle Scholar
  3. 3.
    Serhan, C.N. 2005. Novel eicosanoid and docosanoid mediators: Resolvins, docosatrienes, and neuroprotectins. Current Opinion in Clinical Nutrition and Metabolic Care 8: 115–121.PubMedCrossRefGoogle Scholar
  4. 4.
    Daleau, P. 1999. Lysophosphatidylcholine, a metabolite which accumulates early in myocardium during ischemia, reduces gap junctional coupling in cardiac cells. Journal of Molecular and Cellular Cardiology 31: 1391–1401.PubMedCrossRefGoogle Scholar
  5. 5.
    Fuchs, B., J. Schiller, U. Wagner, H. Häntzschel, and K. Arnold. 2005. The phosphatidylcholine /lysophosphatidylcholine ratio in human plasma is an indicator of the severity of rheumatoid arthritis: Investigations by 31P NMR and MALDI-TOF MS. Clinical Biochemistry 38: 925–933.PubMedCrossRefGoogle Scholar
  6. 6.
    Muralikrishna Adibhatla, R., and J.F. Hatcher. 2006. Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radical Biology & Medicine 40: 376–387.CrossRefGoogle Scholar
  7. 7.
    Shi, Y., P. Zhang, L. Zhang, H. Osman, E.R. Mohler, C. Macphee, A. Zalewski, A. Postle, and R.L. Wilensky. 2007. Role of lipoprotein-associated phospholipase A2 in leukocyte activation and inflammatory responses. Atherosclerosis 191: 54–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Fuentes, L., M. Hernández, F.J. Fernández-Avilés, M.S. Crespo, and M.L. Nieto. 2002. Cooperation between secretory phospholipase A2 and TNF-receptor superfamily signaling: implications for the inflammatory response in atherogenesis. Circulation Research 91: 681–688.PubMedCrossRefGoogle Scholar
  9. 9.
    Colles, S.M., and G.M. Chisolm. 2000. Lysophosphatidylcholine-induced cellular injury in cultured fibroblasts involves oxidative events. Journal of Lipid Research 41: 1188–1198.PubMedGoogle Scholar
  10. 10.
    Matsubara, M., and K. Hasegawa. 2005. Benidipine, a dihydropyridine-calcium channel blocker, prevents lysophosphatidylcholine-induced injury and reactive oxygen species production in human aortic endothelial cells. Atherosclerosis 178: 57–66.PubMedCrossRefGoogle Scholar
  11. 11.
    Takeshita, S., N. Inoue, D. Gao, Y. Rikitake, S. Kawashima, R. Tawa, H. Sakurai, and M. Yokoyama. 2000. Lysophosphatidylcholine enhances superoxide anions production via endothelial NADH/NADPH oxidase. Journal of Atherosclerosis and Thrombosis 7: 238–246.PubMedGoogle Scholar
  12. 12.
    Silliman, C.C., D.J. Elzi, D.R. Ambruso, R.J. Musters, C. Hamiel, R.J. Harbeck, A.J. Paterson, A.J. Bjornsen, T.H. Wyman, M. Kelher, K.M. England, N. McLaughlin-Malaxecheberria, C.C. Barnett, J. Aiboshi, and A. Bannerjee. 2003. Lysophosphatidylcholines prime the NADPH oxidase and stimulate multiple neutrophil functions through changes in cytosolic calcium. Journal of Leukocyte Biology 73: 511–524.PubMedCrossRefGoogle Scholar
  13. 13.
    Park, C.H., M.R. Kim, J.M. Han, T.S. Jeong, and D.E. Sok. 2009. Lysophosphatidylcholine exhibits a selective cytotoxicity, accompanied by ROS formation, in RAW 264.7 macrophages. Lipids 44: 425–435.PubMedCrossRefGoogle Scholar
  14. 14.
    Huang, L.S., M.R. Kim, and D.E. Sok. 2008. Regulation of lipoxygenase activity by polyunsaturated lysophosphatidylcholines or their oxygenation derivatives. Journal of Agricultural and Food Chemistry 56: 7808–7814.PubMedCrossRefGoogle Scholar
  15. 15.
    Funk, C.D. 2001. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 294: 1871–1875.PubMedCrossRefGoogle Scholar
  16. 16.
    Hung, N.D., M.R. Kim, and D.E. Sok. 2009. Anti-inflammatory action of arachidonoyl lysophosphatidylcholine or 15-hydroperoxy derivative in zymosan A-induced peritonitis. Prostaglandins & Other Lipid Mediators 90(3–4): 105–111.CrossRefGoogle Scholar
  17. 17.
    Huang, L.S., N.D. Hung, M.R. Kim, and D.E. Sok. 2010. Lysophosphatidylcholine containing docosahexaenoic acid at the sn-1 position is anti-inflammatory. Lipids 45(3): 225–236.PubMedCrossRefGoogle Scholar
  18. 18.
    Subbaiah, P.V., M. Liu, and F. Paltauf. 1994. Role of sn-2 acyl group of phosphatidylcholine in determining the positional specificity of lecithin-cholesterol acyltransferase. Biochemistry 33(45): 13259–13266.PubMedCrossRefGoogle Scholar
  19. 19.
    Subbaiah, P.V., and M. Liu. 1996. Comparative studies on substrate specificity of lecithin-cholesterol acyltransferase towards the molecular species of phospholipids in plasma of 14 vertebrates. Journal of Lipid Research 37: 113–122.PubMedGoogle Scholar
  20. 20.
    Gauster, M., G. Rechberger, A. Sovic, G. Horl, E. Steyrer, W. Sattler, and S. Frank. 2005. Endothelial lipase releases saturated and unsaturated fatty acids of high density lipoprotein phosphatidylcholine. Journal of Lipid Research 46: 1517–1525.PubMedCrossRefGoogle Scholar
  21. 21.
    Chen, S., and P.V. Subbaiah. 2007. Phospholipid and fatty acid specificity of endothelial lipase: Potential role of the enzyme in the delivery of docosahexaenoic acid (DHA) to tissues. Biochimica et Biophysica Acta 1771(10): 1319–1328.PubMedGoogle Scholar
  22. 22.
    Cedars, A., C.M. Jenkins, D.J. Mancuso, and R.W. Gross. 2009. Calcium-independent phospholipases in the heart: Mediators of cellular signaling, bioenergetics, and ischemia-induced electrophysiologic dysfunction. Journal of Cardiovascular Pharmacology 53(4): 277–289.PubMedGoogle Scholar
  23. 23.
    Satouchi, K., M. Sakaguchi, M. Shirakawa, K. Hirano, and T. Tanaka. 1994. Lysophosphatidylcholine from white muscle of bonito Euthynnus pelamis (Linnaeus): Involvement of phospholipase A1 activity for its production. Biochimica et Biophysica Acta 1214(3): 303–308.PubMedGoogle Scholar
  24. 24.
    Huang, L.S., M.R. Kim, and D.E. Sok. 2006. Linoleoyl lysophosphatidylcholine is an efficient substrate for soybean lipoxygenase-1. Archives of Biochemistry and Biophysics 455: 119–126.PubMedCrossRefGoogle Scholar
  25. 25.
    Huang, L.S., M.R. Kim, and D.E. Sok. 2007. Oxygenation of 1-docosahexaenoyl lysophosphatidylcholine by lipoxygenases; conjugated hydroperoxydiene and dihydroxytriene derivatives. Lipids 42: 981–990.PubMedCrossRefGoogle Scholar
  26. 26.
    Huang, L.S., M.R. Kim, and D.E. Sok. 2008. Oxygenation of arachidonoyl lysophospholipids by lipoxygenases from soybean, porcine leukocyte, or rabbit reticulocyte. Journal of Agricultural and Food Chemistry 56: 1224–1232.PubMedCrossRefGoogle Scholar
  27. 27.
    Tokumura, A., J. Sinomiya, S. Kishimoto, T. Tanaka, K. Kogure, T. Sugiura, K. Satouchi, K. Waku, and K. Fukuzawa. 2002. Human platelets respond differentially to lysophosphatidic acids having a highly unsaturated fatty acyl group and alkyl ether-linked lysophosphatidic acids. The Biochemical Journal 365(3): 617–628.PubMedGoogle Scholar
  28. 28.
    Bligh, E.G., and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911–917.PubMedGoogle Scholar
  29. 29.
    Polette, A., C. Deshayes, B. Chantegrel, M. Croset, J.M. Armstrong, and M. Lagarde. 1999. Synthesis of acetyl, docosahexaenoyl-glycerophosphocholine and its characterization using nuclear magnetic resonance. Lipids 34(12): 1333–1337.PubMedCrossRefGoogle Scholar
  30. 30.
    Cho, Y.S., H.S. Kim, C.H. Kim, and H.G. Cheon. 2006. Application of the ferrous oxidation-xylenol orange assay for the screening of 5-lipoxygenase inhibitors. Analytical Biochemistry 351: 62–68.PubMedCrossRefGoogle Scholar
  31. 31.
    Saw, C.L., Y. Huang, and A.N. Kong. 2010. Synergistic anti-inflammatory effects of low doses of curcumin in combination with polyunsaturated fatty acids: Docosahexaenoic acid or eicosapentaenoic acid. Biochemical Pharmacology 79(3): 421–430.PubMedCrossRefGoogle Scholar
  32. 32.
    Aldridge, C., A. Razzak, T.A. Babcock, W.S. Helton, and N.J. Espat. 2008. Lipopolysaccharide-stimulated RAW 264.7 macrophage inducible nitric oxide synthase and nitric oxide production is decreased by an omega-3 fatty acid lipid emulsion. The Journal of Surgical Research 149(2): 296–302.PubMedCrossRefGoogle Scholar
  33. 33.
    Kobori, M., H. Nakayama, K. Fukushima, M. Ohnishi-Kameyama, H. Ono, T. Fukushima, Y. Akimoto, S. Masumoto, C. Yukizaki, Y. Hoshi, T. Deguchi, and M. Yoshida. 2008. Bitter gourd suppresses lipopolysaccharide-induced inflammatory responses. Journal of Agricultural and Food Chemistry 56(11): 4004–4011.PubMedCrossRefGoogle Scholar
  34. 34.
    Moon, Y., and J.J. Pestka. 2003. Deoxynivalenol-induced mitogen-activated protein kinase phosphorylation and IL-6 expression in mice suppressed by fish oil. The Journal of Nutritional Biochemistry 14(12): 717–726.PubMedCrossRefGoogle Scholar
  35. 35.
    Doherty, N.S., P. Poubelle, P. Borgeat, T.H. Beaver, G.L. Westrich, and N.L. Schrader. 1985. Intraperitoneal injection of zymosan in mice induces pain, inflammation and the synthesis of peptidoleukotrienes and prostaglandin E2. Prostaglandins 30: 769–789.PubMedCrossRefGoogle Scholar
  36. 36.
    Rao, T.S., J.L. Currie, A.F. Shaffer, and P.C. Isakson. 1994. In vivo characterization of zymosan-induced mouse peritoneal inflammation. The Journal of Pharmacology and Experimental Therapeutics 269: 917.PubMedGoogle Scholar
  37. 37.
    Byrum, R.S., J.L. Goulet, J.N. Snouwaert, R.J. Griffiths, and B.H. Koller. 1999. Determination of the contribution of cysteinyl leukotrienes and leukotriene B4 in acute inflammatory responses using 5-lipoxygenase-and leukotriene A4 hydrolase-deficient mice. Journal of Immunology 163: 6810–6819.Google Scholar
  38. 38.
    Forrest, M.J., P.J. Jose, and T.J. Williams. 1986. Kinetics of the generation and action of chemical mediators in zymosan-induced inflammation of the rabbit peritoneal cavity. British Journal of Pharmacology 89: 719–730.PubMedGoogle Scholar
  39. 39.
    Kolaczkowska, E., M. Barteczko, B. Plytycz, and B. Arnold. 2008. Role of lymphocytes in the course of murine zymosan-induced peritonitis. Inflammation Research 57(6): 272–278.PubMedCrossRefGoogle Scholar
  40. 40.
    Arita, M., F. Bianchini, J. Aliberti, A. Sher, N. Chiang, S. Hong, R. Yang, N.A. Petasis, and C.N. Serhan. 2005. Stereochemical assignment, anti-inflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. The Journal of Experimental Medicine 201: 713–722.PubMedCrossRefGoogle Scholar
  41. 41.
    Sun, Y.P., S.F. Oh, J. Uddin, R. Yang, K. Gotlinger, E. Campbell, Colgan, N.A. Petasis, and C.N. Serhan. 2007. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. The Journal of Biological Chemistry 282(13): 9323–9334.PubMedCrossRefGoogle Scholar
  42. 42.
    Bannenberg, G., R.L. Moussignac, K. Gronert, P.R. Devchand, B.A. Schmidt, W.J. Guilford, J.G. Bauman, B. Subramanyam, H.D. Perez, J.F. Parkinson, and C.N. Serhan. 2004. Lipoxins and novel 15-epi-lipoxin analogs display potent anti-inflammatory actions after oral administration. British Journal of Pharmacology 143: 43–52.PubMedCrossRefGoogle Scholar
  43. 43.
    Rao, N.L., P.J. Dunford, X. Xue, X. Jiang, K.A. Lundeen, F. Coles, J.P. Riley, K.N. Williams, C.A. Grice, J.P. Edwards, L. Karlsson, and A.M. Fourie. 2007. Anti-inflammatory activity of a potent, selective leukotriene A4 hydrolase inhibitor in comparison with the 5-lipoxygenase inhibitor zileuton. The Journal of Pharmacology and Experimental Therapeutics 321(3): 1154–1160.PubMedCrossRefGoogle Scholar
  44. 44.
    Yuhki, K., F. Ushikubi, and H. Naraba. 2008. Prostaglandin I2 plays a key role in zymosan-induced mouse pleurisy. The Journal of Pharmacology and Experimental Therapeutics 325(2): 601–609.PubMedCrossRefGoogle Scholar
  45. 45.
    Thiès, F., M.C. Delachambre, M. Bentejac, M. Lagarde, and T. Lecerf. 1992. Unsaturated fatty acids esterified in 2-acyl-1-lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. Journal of Neurochemistry 59(3): 1110–1116.PubMedCrossRefGoogle Scholar
  46. 46.
    Bernoud, N., L. Fenart, P. Molière, M.P. Dehouck, M. Lagarde, R. Cecchelli, and J. Lecerf. 1999. Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in vitro blood-brain barrier over unesterified docosahexaenoic acid. Journal of Neurochemistry 72(1): 338–3345.PubMedCrossRefGoogle Scholar
  47. 47.
    Hong, S., K. Gronert, P.R. Devchand, R.L. Moussignac, and C.N. Serhan. 2003. Novel docosatrienes and 17 S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. Journal of Biological Chemistry 278(17): 14677–14687.PubMedCrossRefGoogle Scholar
  48. 48.
    Guzik, T.J., R. Korbut, and T. Adamek-Guzik. 2003. Nitric oxide and superoxide in inflammation and immune regulation. Journal of Physiology and Pharmacology 54(4): 469–487.PubMedGoogle Scholar
  49. 49.
    Bloodsworth, A., V.B. O’Donnell, and B.A. Freeman. 2000. Nitric oxide regulation of free radical-and enzyme-mediated lipid and lipoprotein oxidation. Arteriosclerosis, Thrombosis, and Vascular Biology 20(7): 1707–1715.PubMedGoogle Scholar
  50. 50.
    Triggiani, M., A.N. Fonteh, and F.H. Chilton. 1992. Factors that influence the proportions of platelet-activating factor and 1-acyl-2-acetyl-sn-glycero-3-phosphocholine synthesized by the mast cell. The Biochemical Journal 286(2): 497–503.PubMedGoogle Scholar
  51. 51.
    Kolaczkowska, E., B. Arnold, and G. Opdenakker. 2008. Gelatinase B/MMP-9 as an inflammatory marker enzyme in mouse zymosan peritonitis”: comparison of phase-specific production by mast cells, macrophages, and neutrophils. Immunobiology 213: 109–124.PubMedCrossRefGoogle Scholar
  52. 52.
    Kolaczkowska, E., S. Shahzidi, R. Seljelid, N. Van Rooijen, and B. Plytycz. 2002. Early vascular permeability in murine experimental peritonitis is comediated by residential macrophages and mast cells: Crucial involvement of macrophage-derived cysteinyl-leukotrienes. Inflammation 26: 61–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Bazan, N.G. 2008. Neurotrophins induce neuroprotective signaling in the retinal pigment epithelial cell by activating the synthesis of the anti-inflammatory and anti-apoptotic neuroprotectin D1. Advances in Experimental Medicine and Biology 613: 39–44.PubMedCrossRefGoogle Scholar
  54. 54.
    Serhan, C.N., R. Yang, K. Martinod, K. Kasuga, P.S. Pillai, T.F. Porter, S.F. Oh, and M. Spite. 2009. Maresins: Novel macrophage mediators with potent antiinflammatory and proresolving actions. The Journal of Experimental Medicine 206: 15–23.PubMedCrossRefGoogle Scholar
  55. 55.
    Spite, M., L.V. Norling, L. Summers, R. Yang, D. Cooper, N.A. Petasis, R.J. Flower, M. Perretti, and C.N. Serhan. 2009. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461(7268): 1287–1291.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of PharmacyChungnam National UniversityYuseong-KuRepublic of Korea
  2. 2.Department of Food and NutritionChungnam National UniversityYuseong-KuRepublic of Korea

Personalised recommendations