Skip to main content

Advertisement

Log in

Oral Administration of 2-Docosahexaenoyl Lysophosphatidylcholine Displayed Anti-Inflammatory Effects on Zymosan A-Induced Peritonitis

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Lysophosphatidylcholines (lysoPCs) have been known to be bioactive lipid mediators, which take part in various biological and pathological processes. In the present study, we examined the anti-inflammatory actions of 2-docosahexaenoyl lysophosphatidylcholine (2-docosahexaenoyl-lysoPC) in vitro as well as in vivo systems. When RAW 264.7 cells were treated with 2-docoshexaenoyl-lysoPC, a concentration-dependent decrease of LPS-induced formation of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), or IL-6 was observed. Additionally, oral administration of 2-docosahexaenoyl-lysoPC was found to inhibit zymosan A-induced plasma leakage dose-dependently in mice with ED50 value of 50 μg/kg and E max value of about 65%. Moreover, mechanistic study revealed that the anti-inflammatory action of 2-docosahexaenoyl-lysoPC seemed to be related largely to LTC4 inhibition, but not PGE2 inhibition. Moreover, 2-(17-hydroperoxydocosahexaneoyl)-lysoPC, intravenously administrated, was more effective than 2-docosahexaenoyl-lysoPC in the inhibition of zymosan A-induced plasma leakage, suggesting that 2-(17-hydroperoxydocosahexaneoyl)-lysoPC, a product from oxygenation of 2-docosahexaenoyl-lysoPC by 15-lipoxygenase (LOX), may be an active metabolite, intimately responsible for anti-inflammatory actions, generated from 2-docosahexaenoyl-lysoPC. In a related study, 2-docosahexaenoyl-lysoPC was found to be more efficient than 1-docosahexaenoyl-lysoPC or docosahexaenoic acid (DHA) as substrate for 15-lipoxygenases such as soybean LOX-1, leukocyte 12/15-LOX, and human 15-LOX-2. Taken altogether, it is suggested that 2-docosahexaenoyl-lysoPC and its oxygenation products may exert anti-inflammatory action after oral administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DHA:

docosahexaenoic acid

17-HDoHA:

17-hydroxydocoxahexaenoic acid

1-linoleoyl-lysoPC:

1-linoleoyl-lysophosphatidylcholine

1-arachidonoyl-lysoPC:

1-arachidonoyl-lysophosphatidylcholine

1-docosahexaenoyl-lysoPC:

1-docosahexaenoyl-lysophosphatidylcholine

2-docosahexaenoyl-lysoPC:

2-docosahexaenoyl-lysophosphatidylcholine

LOX:

lipoxygenase

ED50 :

50% effective dose

PLA2 :

phospholipase A2

LTC4 :

leukotriene C4

PGE2 :

prostaglandin E2

IL-6:

Interleukin-6

TNF-α:

tumor necrosis factor alpha

NO:

nitric oxide

References

  1. Serhan, C.N., and J. Savill. 2005. Resolution of inflammation: The beginning programs the end. Nature Immunology 6: 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  2. Levy, B.D., C.B. Clish, B. Schmidt, K. Gronert, and C.N. Serhan. 2001. Lipid mediator class switching during acute inflammation: Signals in resolution. Nature Immunology 2(7): 612–619.

    Article  PubMed  CAS  Google Scholar 

  3. Serhan, C.N. 2005. Novel eicosanoid and docosanoid mediators: Resolvins, docosatrienes, and neuroprotectins. Current Opinion in Clinical Nutrition and Metabolic Care 8: 115–121.

    Article  PubMed  CAS  Google Scholar 

  4. Daleau, P. 1999. Lysophosphatidylcholine, a metabolite which accumulates early in myocardium during ischemia, reduces gap junctional coupling in cardiac cells. Journal of Molecular and Cellular Cardiology 31: 1391–1401.

    Article  PubMed  CAS  Google Scholar 

  5. Fuchs, B., J. Schiller, U. Wagner, H. Häntzschel, and K. Arnold. 2005. The phosphatidylcholine /lysophosphatidylcholine ratio in human plasma is an indicator of the severity of rheumatoid arthritis: Investigations by 31P NMR and MALDI-TOF MS. Clinical Biochemistry 38: 925–933.

    Article  PubMed  CAS  Google Scholar 

  6. Muralikrishna Adibhatla, R., and J.F. Hatcher. 2006. Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radical Biology & Medicine 40: 376–387.

    Article  CAS  Google Scholar 

  7. Shi, Y., P. Zhang, L. Zhang, H. Osman, E.R. Mohler, C. Macphee, A. Zalewski, A. Postle, and R.L. Wilensky. 2007. Role of lipoprotein-associated phospholipase A2 in leukocyte activation and inflammatory responses. Atherosclerosis 191: 54–62.

    Article  PubMed  CAS  Google Scholar 

  8. Fuentes, L., M. Hernández, F.J. Fernández-Avilés, M.S. Crespo, and M.L. Nieto. 2002. Cooperation between secretory phospholipase A2 and TNF-receptor superfamily signaling: implications for the inflammatory response in atherogenesis. Circulation Research 91: 681–688.

    Article  PubMed  CAS  Google Scholar 

  9. Colles, S.M., and G.M. Chisolm. 2000. Lysophosphatidylcholine-induced cellular injury in cultured fibroblasts involves oxidative events. Journal of Lipid Research 41: 1188–1198.

    PubMed  CAS  Google Scholar 

  10. Matsubara, M., and K. Hasegawa. 2005. Benidipine, a dihydropyridine-calcium channel blocker, prevents lysophosphatidylcholine-induced injury and reactive oxygen species production in human aortic endothelial cells. Atherosclerosis 178: 57–66.

    Article  PubMed  CAS  Google Scholar 

  11. Takeshita, S., N. Inoue, D. Gao, Y. Rikitake, S. Kawashima, R. Tawa, H. Sakurai, and M. Yokoyama. 2000. Lysophosphatidylcholine enhances superoxide anions production via endothelial NADH/NADPH oxidase. Journal of Atherosclerosis and Thrombosis 7: 238–246.

    PubMed  CAS  Google Scholar 

  12. Silliman, C.C., D.J. Elzi, D.R. Ambruso, R.J. Musters, C. Hamiel, R.J. Harbeck, A.J. Paterson, A.J. Bjornsen, T.H. Wyman, M. Kelher, K.M. England, N. McLaughlin-Malaxecheberria, C.C. Barnett, J. Aiboshi, and A. Bannerjee. 2003. Lysophosphatidylcholines prime the NADPH oxidase and stimulate multiple neutrophil functions through changes in cytosolic calcium. Journal of Leukocyte Biology 73: 511–524.

    Article  PubMed  CAS  Google Scholar 

  13. Park, C.H., M.R. Kim, J.M. Han, T.S. Jeong, and D.E. Sok. 2009. Lysophosphatidylcholine exhibits a selective cytotoxicity, accompanied by ROS formation, in RAW 264.7 macrophages. Lipids 44: 425–435.

    Article  PubMed  CAS  Google Scholar 

  14. Huang, L.S., M.R. Kim, and D.E. Sok. 2008. Regulation of lipoxygenase activity by polyunsaturated lysophosphatidylcholines or their oxygenation derivatives. Journal of Agricultural and Food Chemistry 56: 7808–7814.

    Article  PubMed  CAS  Google Scholar 

  15. Funk, C.D. 2001. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 294: 1871–1875.

    Article  PubMed  CAS  Google Scholar 

  16. Hung, N.D., M.R. Kim, and D.E. Sok. 2009. Anti-inflammatory action of arachidonoyl lysophosphatidylcholine or 15-hydroperoxy derivative in zymosan A-induced peritonitis. Prostaglandins & Other Lipid Mediators 90(3–4): 105–111.

    Article  CAS  Google Scholar 

  17. Huang, L.S., N.D. Hung, M.R. Kim, and D.E. Sok. 2010. Lysophosphatidylcholine containing docosahexaenoic acid at the sn-1 position is anti-inflammatory. Lipids 45(3): 225–236.

    Article  PubMed  CAS  Google Scholar 

  18. Subbaiah, P.V., M. Liu, and F. Paltauf. 1994. Role of sn-2 acyl group of phosphatidylcholine in determining the positional specificity of lecithin-cholesterol acyltransferase. Biochemistry 33(45): 13259–13266.

    Article  PubMed  CAS  Google Scholar 

  19. Subbaiah, P.V., and M. Liu. 1996. Comparative studies on substrate specificity of lecithin-cholesterol acyltransferase towards the molecular species of phospholipids in plasma of 14 vertebrates. Journal of Lipid Research 37: 113–122.

    PubMed  CAS  Google Scholar 

  20. Gauster, M., G. Rechberger, A. Sovic, G. Horl, E. Steyrer, W. Sattler, and S. Frank. 2005. Endothelial lipase releases saturated and unsaturated fatty acids of high density lipoprotein phosphatidylcholine. Journal of Lipid Research 46: 1517–1525.

    Article  PubMed  CAS  Google Scholar 

  21. Chen, S., and P.V. Subbaiah. 2007. Phospholipid and fatty acid specificity of endothelial lipase: Potential role of the enzyme in the delivery of docosahexaenoic acid (DHA) to tissues. Biochimica et Biophysica Acta 1771(10): 1319–1328.

    PubMed  CAS  Google Scholar 

  22. Cedars, A., C.M. Jenkins, D.J. Mancuso, and R.W. Gross. 2009. Calcium-independent phospholipases in the heart: Mediators of cellular signaling, bioenergetics, and ischemia-induced electrophysiologic dysfunction. Journal of Cardiovascular Pharmacology 53(4): 277–289.

    PubMed  CAS  Google Scholar 

  23. Satouchi, K., M. Sakaguchi, M. Shirakawa, K. Hirano, and T. Tanaka. 1994. Lysophosphatidylcholine from white muscle of bonito Euthynnus pelamis (Linnaeus): Involvement of phospholipase A1 activity for its production. Biochimica et Biophysica Acta 1214(3): 303–308.

    PubMed  Google Scholar 

  24. Huang, L.S., M.R. Kim, and D.E. Sok. 2006. Linoleoyl lysophosphatidylcholine is an efficient substrate for soybean lipoxygenase-1. Archives of Biochemistry and Biophysics 455: 119–126.

    Article  PubMed  CAS  Google Scholar 

  25. Huang, L.S., M.R. Kim, and D.E. Sok. 2007. Oxygenation of 1-docosahexaenoyl lysophosphatidylcholine by lipoxygenases; conjugated hydroperoxydiene and dihydroxytriene derivatives. Lipids 42: 981–990.

    Article  PubMed  CAS  Google Scholar 

  26. Huang, L.S., M.R. Kim, and D.E. Sok. 2008. Oxygenation of arachidonoyl lysophospholipids by lipoxygenases from soybean, porcine leukocyte, or rabbit reticulocyte. Journal of Agricultural and Food Chemistry 56: 1224–1232.

    Article  PubMed  CAS  Google Scholar 

  27. Tokumura, A., J. Sinomiya, S. Kishimoto, T. Tanaka, K. Kogure, T. Sugiura, K. Satouchi, K. Waku, and K. Fukuzawa. 2002. Human platelets respond differentially to lysophosphatidic acids having a highly unsaturated fatty acyl group and alkyl ether-linked lysophosphatidic acids. The Biochemical Journal 365(3): 617–628.

    PubMed  CAS  Google Scholar 

  28. Bligh, E.G., and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911–917.

    PubMed  CAS  Google Scholar 

  29. Polette, A., C. Deshayes, B. Chantegrel, M. Croset, J.M. Armstrong, and M. Lagarde. 1999. Synthesis of acetyl, docosahexaenoyl-glycerophosphocholine and its characterization using nuclear magnetic resonance. Lipids 34(12): 1333–1337.

    Article  PubMed  CAS  Google Scholar 

  30. Cho, Y.S., H.S. Kim, C.H. Kim, and H.G. Cheon. 2006. Application of the ferrous oxidation-xylenol orange assay for the screening of 5-lipoxygenase inhibitors. Analytical Biochemistry 351: 62–68.

    Article  PubMed  CAS  Google Scholar 

  31. Saw, C.L., Y. Huang, and A.N. Kong. 2010. Synergistic anti-inflammatory effects of low doses of curcumin in combination with polyunsaturated fatty acids: Docosahexaenoic acid or eicosapentaenoic acid. Biochemical Pharmacology 79(3): 421–430.

    Article  PubMed  CAS  Google Scholar 

  32. Aldridge, C., A. Razzak, T.A. Babcock, W.S. Helton, and N.J. Espat. 2008. Lipopolysaccharide-stimulated RAW 264.7 macrophage inducible nitric oxide synthase and nitric oxide production is decreased by an omega-3 fatty acid lipid emulsion. The Journal of Surgical Research 149(2): 296–302.

    Article  PubMed  CAS  Google Scholar 

  33. Kobori, M., H. Nakayama, K. Fukushima, M. Ohnishi-Kameyama, H. Ono, T. Fukushima, Y. Akimoto, S. Masumoto, C. Yukizaki, Y. Hoshi, T. Deguchi, and M. Yoshida. 2008. Bitter gourd suppresses lipopolysaccharide-induced inflammatory responses. Journal of Agricultural and Food Chemistry 56(11): 4004–4011.

    Article  PubMed  CAS  Google Scholar 

  34. Moon, Y., and J.J. Pestka. 2003. Deoxynivalenol-induced mitogen-activated protein kinase phosphorylation and IL-6 expression in mice suppressed by fish oil. The Journal of Nutritional Biochemistry 14(12): 717–726.

    Article  PubMed  CAS  Google Scholar 

  35. Doherty, N.S., P. Poubelle, P. Borgeat, T.H. Beaver, G.L. Westrich, and N.L. Schrader. 1985. Intraperitoneal injection of zymosan in mice induces pain, inflammation and the synthesis of peptidoleukotrienes and prostaglandin E2. Prostaglandins 30: 769–789.

    Article  PubMed  CAS  Google Scholar 

  36. Rao, T.S., J.L. Currie, A.F. Shaffer, and P.C. Isakson. 1994. In vivo characterization of zymosan-induced mouse peritoneal inflammation. The Journal of Pharmacology and Experimental Therapeutics 269: 917.

    PubMed  CAS  Google Scholar 

  37. Byrum, R.S., J.L. Goulet, J.N. Snouwaert, R.J. Griffiths, and B.H. Koller. 1999. Determination of the contribution of cysteinyl leukotrienes and leukotriene B4 in acute inflammatory responses using 5-lipoxygenase-and leukotriene A4 hydrolase-deficient mice. Journal of Immunology 163: 6810–6819.

    CAS  Google Scholar 

  38. Forrest, M.J., P.J. Jose, and T.J. Williams. 1986. Kinetics of the generation and action of chemical mediators in zymosan-induced inflammation of the rabbit peritoneal cavity. British Journal of Pharmacology 89: 719–730.

    PubMed  CAS  Google Scholar 

  39. Kolaczkowska, E., M. Barteczko, B. Plytycz, and B. Arnold. 2008. Role of lymphocytes in the course of murine zymosan-induced peritonitis. Inflammation Research 57(6): 272–278.

    Article  PubMed  CAS  Google Scholar 

  40. Arita, M., F. Bianchini, J. Aliberti, A. Sher, N. Chiang, S. Hong, R. Yang, N.A. Petasis, and C.N. Serhan. 2005. Stereochemical assignment, anti-inflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. The Journal of Experimental Medicine 201: 713–722.

    Article  PubMed  CAS  Google Scholar 

  41. Sun, Y.P., S.F. Oh, J. Uddin, R. Yang, K. Gotlinger, E. Campbell, Colgan, N.A. Petasis, and C.N. Serhan. 2007. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. The Journal of Biological Chemistry 282(13): 9323–9334.

    Article  PubMed  CAS  Google Scholar 

  42. Bannenberg, G., R.L. Moussignac, K. Gronert, P.R. Devchand, B.A. Schmidt, W.J. Guilford, J.G. Bauman, B. Subramanyam, H.D. Perez, J.F. Parkinson, and C.N. Serhan. 2004. Lipoxins and novel 15-epi-lipoxin analogs display potent anti-inflammatory actions after oral administration. British Journal of Pharmacology 143: 43–52.

    Article  PubMed  CAS  Google Scholar 

  43. Rao, N.L., P.J. Dunford, X. Xue, X. Jiang, K.A. Lundeen, F. Coles, J.P. Riley, K.N. Williams, C.A. Grice, J.P. Edwards, L. Karlsson, and A.M. Fourie. 2007. Anti-inflammatory activity of a potent, selective leukotriene A4 hydrolase inhibitor in comparison with the 5-lipoxygenase inhibitor zileuton. The Journal of Pharmacology and Experimental Therapeutics 321(3): 1154–1160.

    Article  PubMed  CAS  Google Scholar 

  44. Yuhki, K., F. Ushikubi, and H. Naraba. 2008. Prostaglandin I2 plays a key role in zymosan-induced mouse pleurisy. The Journal of Pharmacology and Experimental Therapeutics 325(2): 601–609.

    Article  PubMed  CAS  Google Scholar 

  45. Thiès, F., M.C. Delachambre, M. Bentejac, M. Lagarde, and T. Lecerf. 1992. Unsaturated fatty acids esterified in 2-acyl-1-lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. Journal of Neurochemistry 59(3): 1110–1116.

    Article  PubMed  Google Scholar 

  46. Bernoud, N., L. Fenart, P. Molière, M.P. Dehouck, M. Lagarde, R. Cecchelli, and J. Lecerf. 1999. Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in vitro blood-brain barrier over unesterified docosahexaenoic acid. Journal of Neurochemistry 72(1): 338–3345.

    Article  PubMed  CAS  Google Scholar 

  47. Hong, S., K. Gronert, P.R. Devchand, R.L. Moussignac, and C.N. Serhan. 2003. Novel docosatrienes and 17 S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. Journal of Biological Chemistry 278(17): 14677–14687.

    Article  PubMed  CAS  Google Scholar 

  48. Guzik, T.J., R. Korbut, and T. Adamek-Guzik. 2003. Nitric oxide and superoxide in inflammation and immune regulation. Journal of Physiology and Pharmacology 54(4): 469–487.

    PubMed  CAS  Google Scholar 

  49. Bloodsworth, A., V.B. O’Donnell, and B.A. Freeman. 2000. Nitric oxide regulation of free radical-and enzyme-mediated lipid and lipoprotein oxidation. Arteriosclerosis, Thrombosis, and Vascular Biology 20(7): 1707–1715.

    PubMed  CAS  Google Scholar 

  50. Triggiani, M., A.N. Fonteh, and F.H. Chilton. 1992. Factors that influence the proportions of platelet-activating factor and 1-acyl-2-acetyl-sn-glycero-3-phosphocholine synthesized by the mast cell. The Biochemical Journal 286(2): 497–503.

    PubMed  CAS  Google Scholar 

  51. Kolaczkowska, E., B. Arnold, and G. Opdenakker. 2008. Gelatinase B/MMP-9 as an inflammatory marker enzyme in mouse zymosan peritonitis”: comparison of phase-specific production by mast cells, macrophages, and neutrophils. Immunobiology 213: 109–124.

    Article  PubMed  CAS  Google Scholar 

  52. Kolaczkowska, E., S. Shahzidi, R. Seljelid, N. Van Rooijen, and B. Plytycz. 2002. Early vascular permeability in murine experimental peritonitis is comediated by residential macrophages and mast cells: Crucial involvement of macrophage-derived cysteinyl-leukotrienes. Inflammation 26: 61–71.

    Article  PubMed  CAS  Google Scholar 

  53. Bazan, N.G. 2008. Neurotrophins induce neuroprotective signaling in the retinal pigment epithelial cell by activating the synthesis of the anti-inflammatory and anti-apoptotic neuroprotectin D1. Advances in Experimental Medicine and Biology 613: 39–44.

    Article  PubMed  CAS  Google Scholar 

  54. Serhan, C.N., R. Yang, K. Martinod, K. Kasuga, P.S. Pillai, T.F. Porter, S.F. Oh, and M. Spite. 2009. Maresins: Novel macrophage mediators with potent antiinflammatory and proresolving actions. The Journal of Experimental Medicine 206: 15–23.

    Article  PubMed  CAS  Google Scholar 

  55. Spite, M., L.V. Norling, L. Summers, R. Yang, D. Cooper, N.A. Petasis, R.J. Flower, M. Perretti, and C.N. Serhan. 2009. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461(7268): 1287–1291.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF 2009-0069242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Eun Sok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, N.D., Kim, M.R. & Sok, DE. Oral Administration of 2-Docosahexaenoyl Lysophosphatidylcholine Displayed Anti-Inflammatory Effects on Zymosan A-Induced Peritonitis. Inflammation 34, 147–160 (2011). https://doi.org/10.1007/s10753-010-9218-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-010-9218-z

KEY WORDS

Navigation