Inflammation

, Volume 32, Issue 5, pp 322–332

A Role for Forkhead Box A1 in Acute Lung Injury

  • Lan Song
  • Bin Zhang
  • Yansheng Feng
  • Xinjing Luo
  • Xing Wei
  • Xianzhong Xiao
Article

Abstract

Forkhead box protein A1 (FoxA1) is an evolutionarily conserved winged helix transcription factor with diverse regulatory functions. However, little is known about the role of FoxA1 in acute lung injury (ALI) and pulmonary cell injury. In this study, an in vivo model was employed whereby rats were administered an intravenous injection of oleic acid (OA, 0.1 ml/kg), and alveolar type II epithelial cells (AT-2 cells) injury was induced by hydrogen peroxide (H2O2) in vitro. OA injection resulted in lung injury and AT-2 cells apoptosis in vivo. OA injection and H2O2 upregulated FoxA1 mRNA and protein in lung tissue of the in vivo ALI model and in H2O2 challenged AT-2 cells. Overexpression of FoxA1 promoted apoptosis, whereas FoxA1 deficiency, induced by antisense oligonucleotides, decreased AT-2 cells apoptosis induced by H2O2, as shown by flow cytometry. These results suggest that FoxA1 may play an important role in ALI by promoting apoptosis of pulmonary epithelial cells.

KEY WORDS

acute lung injury forkhead box A1 apoptosis 

References

  1. 1.
    Goss, C. H., R. G. Brower, L. D. Hudson, and G. D. Rubenfeld. 2003. Incidence of acute lung injury in the United States. Crit. Care Med. 31:1607–1611. doi:10.1097/01.CCM.0000063475.65751.1D.PubMedCrossRefGoogle Scholar
  2. 2.
    Mendez, J. L., and R. D. Hubmayr. 2005. New insights into the pathology of acute respiratory failure. Curr. Opin. Crit. Care. 11:29–36. doi:10.1097/00075198-200502000-00005.PubMedCrossRefGoogle Scholar
  3. 3.
    Rubenfeld, G. D., E. Caldwell, E. Peabody, J. Weaver, D. P. Martin, M. Neff, et al. 2005. Incidence and outcomes of acute lung injury. N. Engl. J. Med. 353:1685–1693. doi:10.1056/NEJMoa050333.PubMedCrossRefGoogle Scholar
  4. 4.
    Ware, L. B., and M. A. Matthay. 2000. The acute respiratory distress syndrome. N. Engl. J. Med. 342:1334–1349. doi:10.1056/NEJM200005043421806.PubMedCrossRefGoogle Scholar
  5. 5.
    Crimi, E., and A. S. Slutsky. 2004. Inflammation and the acute respiratory distress syndrome. Best Pract. Res. Clin. Anaesthesiol. 18:477–492. doi:10.1016/j.bpa.2003.12.007.PubMedCrossRefGoogle Scholar
  6. 6.
    Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N. Engl. J. Med. 342:1301–1308. doi:10.1056/NEJM200005043421801
  7. 7.
    Matthay, M. A., G. A. Zimmerman, C. Esmon, J. Bhattacharya, B. Coller, C. M. Doerschuk, et al. 2003. Future research directions in acute lung injury: summary of a National Heart, Lung, and Blood Institute working group. Am. J. Respir. Crit. Care Med. 167:1027–1035. doi:10.1164/rccm.200208-966WS.PubMedCrossRefGoogle Scholar
  8. 8.
    Mehta, D., J. Bhattacharya, M. A. Matthay, and A. B. Malik. 2004. Integrated control of lung fluid balance. Am. J. Physiol. Lung Cell. Mol. Physiol. 287:L1081–L1090. doi:10.1152/ajplung.00268.2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Slutsky, A. S., and L. D. Hudson. 2006. PEEP or no PEEP—lung recruitment may be the solution. N. Engl. J. Med. 354:1839–1841. doi:10.1056/NEJMe068045.PubMedCrossRefGoogle Scholar
  10. 10.
    Tampo, Y., M. Tsukamoto, and M. Yonaha. 1999. Superoxide production from paraquat evoked by exogenous NADPH in pulmonary endothelial cells. Free Radic. Biol. Med. 27:588–595. doi:10.1016/S0891-5849(99)00110-0.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang, H., A. S. Slutsky, and J. L. Vincent. 2000. Oxygen free radicals in ARDS, septic shock and organ dysfunction. Intensive Care Med. 26:474–476. doi:10.1007/s001340051185.PubMedCrossRefGoogle Scholar
  12. 12.
    Yang, C., H. Moriuchi, J. Takase, Y. Ishitsuka, M. Irikura, and T. Irie. 2003. Oxidative stress in early stage of acute lung injury induced with oleic acid in guinea pigs. Biol. Pharm. Bull. 26:424–428. doi:10.1248/bpb.26.424.PubMedCrossRefGoogle Scholar
  13. 13.
    Albertine, K. H., M. F. Soulier, Z. Wang, A. Ishizaka, S. Hashimoto, G. A. Zimmerman, et al. 2002. Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am. J. Pathol. 161:1783–1796.PubMedGoogle Scholar
  14. 14.
    Kitamura, Y., S. Hashimoto, N. Mizuta, A. Kobayashi, K. Kooguchi, I. Fujiwara, et al. 2001. Fas/FasL-dependent apoptosis of alveolar cells after lipopolysaccharide-induced lung injury in mice. Am. J. Respir. Crit. Care Med. 163:762–769.PubMedGoogle Scholar
  15. 15.
    Monaghan, A. P., K. H. Kaestner, E. Grau, and G. Schutz. 1993. Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119:567–578.PubMedGoogle Scholar
  16. 16.
    Ang, S. L., A. Wierda, D. Wong, K. A. Stevens, S. Cascio, J. Rossant, et al. 1993. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119:1301–1315.PubMedGoogle Scholar
  17. 17.
    Sasaki, H., and B. L. Hogan. 1993. Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118:47–59.PubMedGoogle Scholar
  18. 18.
    Ruiz i Altaba, A., C. Cox, T. M. Jessell, and A. Klar. 1993. Ectopic neural expression of a floor plate marker in frog embryos injected with the midline transcription factor Pintallavis. Proc. Natl. Acad. Sci. U. S. A. 90:8268–8272. doi:10.1073/pnas.90.17.8268.PubMedCrossRefGoogle Scholar
  19. 19.
    Besnard, V., S. E. Wert, W. M. Hull, and J. A. Whitsett. 2004. Immunohistochemical localization of Foxa1 and Foxa2 in mouse embryos and adult tissues. Gene Expr. Patterns 5:193–208. doi:10.1016/j.modgep.2004.08.006.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaestner, K. H., H. Hiemisch, B. Luckow, and G. Schutz. 1994. The HNF-3 gene family of transcription factors in mice: gene structure, cDNA sequence, and mRNA distribution. Genomics 20:377–385. doi:10.1006/geno.1994.1191.PubMedCrossRefGoogle Scholar
  21. 21.
    Lai, E., V. R. Prezioso, E. Smith, O. Litvin, R. H. Costa, and J. E. Darnell Jr. 1990. HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev. 4:1427–1436. doi:10.1101/gad.4.8.1427.PubMedCrossRefGoogle Scholar
  22. 22.
    Besnard, V., S. E. Wert, K. H. Kaestner, and J. A. Whitsett. 2005. Stage-specific regulation of respiratory epithelial cell differentiation by Foxa1. Am. J. Physiol. Lung Cell. Mol. Physiol. 289:L750–L759. doi:10.1152/ajplung.00151.2005.PubMedCrossRefGoogle Scholar
  23. 23.
    Vazquez de Lara, L., C. Becerril, M. Montano, C. Ramos, V. Maldonado, J. Melendez, et al. 2000. Surfactant components modulate fibroblast apoptosis and type I collagen and collagenase-1 expression. Am. J. Physiol. Lung Cell. Mol. Physiol. 279:L950–L957.PubMedGoogle Scholar
  24. 24.
    White, M. K., V. Baireddy, and D. S. Strayer. 2001. Natural protection from apoptosis by surfactant protein A in type II pneumocytes. Exp. Cell. Res. 263:183–192. doi:10.1006/excr.2000.5120.PubMedCrossRefGoogle Scholar
  25. 25.
    Minoo, P., L. Hu, Y. Xing, N. L. Zhu, H. Chen, M. Li, et al. 2007. Physical and functional interactions between homeodomain NKX2.1 and winged helix/forkhead FOXA1 in lung epithelial cells. Mol. Cell. Biol. 27:2155–65. doi:10.1128/MCB.01133-06.PubMedCrossRefGoogle Scholar
  26. 26.
    Nishina, K., K. Mikawa, Y. Takao, N. Maekawa, M. Shiga, and H. Obara. 1997. ONO-5046, an elastase inhibitor, attenuates endotoxin-induced acute lung injury in rabbits. Anesth. Analg. 84:1097–1103. doi:10.1097/00000539-199705000-00026.PubMedCrossRefGoogle Scholar
  27. 27.
    Schittny, J. C., V. Djonov, A. Fine, and P. H. Burri. 1998. Programmed cell death contributes to postnatal lung development. Am. J. Respir. Cell. Mol. Biol. 18:786–793.PubMedGoogle Scholar
  28. 28.
    Mulier, B., I. Rahman, T. Watchorn, K. Donaldson, W. MacNee, and P. K. Jeffery. 1998. Hydrogen peroxide-induced epithelial injury: the protective role of intracellular nonprotein thiols (NPSH). Eur. Respir. J. 11:384–91. doi:10.1183/09031936.98.11020384.PubMedCrossRefGoogle Scholar
  29. 29.
    Roberts, J. R., G. D. Perkins, T. Fujisawa, K. A. Pettigrew, F. Gao, A. Ahmed, et al. 2007. Vascular endothelial growth factor promotes physical wound repair and is anti-apoptotic in primary distal lung epithelial and A549 cells. Crit. Care Med. 35:2164–2170. doi:10.1097/01.CCM.0000281451.73202.F6.PubMedCrossRefGoogle Scholar
  30. 30.
    Lockshin, R. A. 2005. Programmed cell death: history and future of a concept. J. Soc. Biol. 199:169–173. doi:10.1051/jbio:2005017.PubMedCrossRefGoogle Scholar
  31. 31.
    Iuchi, T., M. Akaike, T. Mitsui, Y. Ohshima, Y. Shintani, H. Azuma, et al. 2003. Glucocorticoid excess induces superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction. Circ. Res. 92:81–87. doi:10.1161/01.RES.0000050588.35034.3C.PubMedCrossRefGoogle Scholar
  32. 32.
    Cox, G., J. Crossley, and Z. Xing. 1995. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am. J. Respir. Cell. Mol. Biol. 12:232–237.PubMedGoogle Scholar
  33. 33.
    Haslett, C., J. S. Savill, M. K. Whyte, M. Stern, I. Dransfield, and L. C. Meagher. 1994. Granulocyte apoptosis and the control of inflammation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 345:327–333. doi:10.1098/rstb.1994.0113.PubMedCrossRefGoogle Scholar
  34. 34.
    Matute-Bello, G., W. C. Liles, K. P. Steinberg, P. A. Kiener, S. Mongovin, E. Y. Chi, et al. 1999. Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury (ARDS). J. Immunol. 163:2217–2225.PubMedGoogle Scholar
  35. 35.
    Hashimoto, S., A. Kobayashi, K. Kooguchi, Y. Kitamura, H. Onodera, and H. Nakajima. 2000. Upregulation of two death pathways of perforin/granzyme and FasL/Fas in septic acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 161:237–243.PubMedGoogle Scholar
  36. 36.
    Wan, H., S. Dingle, Y. Xu, V. Besnard, K. H. Kaestner, S. L. Ang, et al. 2005. Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. J. Biol. Chem. 280:13809–13816. doi:10.1074/jbc.M414122200.PubMedCrossRefGoogle Scholar
  37. 37.
    Whitsett, J. A., and Y. Matsuzaki. 2006. Transcriptional regulation of perinatal lung maturation. Pediatr. Clin. North Am. 53:873–887. viii. doi:10.1016/j.pcl.2006.08.009.PubMedCrossRefGoogle Scholar
  38. 38.
    Park, K. S., J. M. Wells, A. M. Zorn, S. E. Wert, V. E. Laubach, L. G. Fernandez, et al. 2006. Transdifferentiation of ciliated cells during repair of the respiratory epithelium. Am. J. Respir. Cell. Mol. Biol. 34:151–157 doi:10.1165/rcmb.2005-0332OC.PubMedCrossRefGoogle Scholar
  39. 39.
    Bardales, R. H., S. S. Xie, R. F. Schaefer, and S. M. Hsu. 1996. Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. Am. J. Pathol. 149:845–852.PubMedGoogle Scholar
  40. 40.
    Wang, H. C., C. T. Shun, S. M. Hsu, S. H. Kuo, K. T. Luh, and P. C. Yang. 2002. Fas/Fas ligand pathway is involved in the resolution of type II pneumocyte hyperplasia after acute lung injury: evidence from a rat model. Crit. Care Med. 30:1528–34. doi:10.1097/00003246-200207000-00022.PubMedCrossRefGoogle Scholar
  41. 41.
    Tewari, M., L. T. Quan, K. O’Rourke, S. Desnoyers, Z. Zeng, D. R. Beidler, et al. 1995. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801–809. doi:10.1016/0092-8674(95)90541-3.PubMedCrossRefGoogle Scholar
  42. 42.
    Matute-Bello, G., W. C. Liles, C. W. Frevert, M. Nakamura, K. Ballman, C. Vathanaprida, et al. 2001. Recombinant human Fas ligand induces alveolar epithelial cell apoptosis and lung injury in rabbits. Am. J. Physiol. Lung Cell. Mol. Physiol. 281:L328–L335.PubMedGoogle Scholar
  43. 43.
    Matute-Bello, G., R. K. Winn, M. Jonas, E. Y. Chi, T. R. Martin, and W. C. Liles. 2001. Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute pulmonary inflammation. Am. J. Pathol. 158:153–161.PubMedGoogle Scholar
  44. 44.
    Dobbs, L. G., R. Gonzalez, and M. C. Williams. 1986. An improved method for isolating type II cells in high yield and purity. Am. Rev. Respir. Dis. 134:141–145.PubMedGoogle Scholar
  45. 45.
    Dobbs, L. G. 1990. Isolation and culture of alveolar type II cells. Am. J. Physiol. 258:L134–L147.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lan Song
    • 1
    • 2
  • Bin Zhang
    • 1
  • Yansheng Feng
    • 1
  • Xinjing Luo
    • 1
  • Xing Wei
    • 1
  • Xianzhong Xiao
    • 1
  1. 1.Laboratory of Shock, Department of Pathophysiology, Xiangya School of MedicineCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Nanhua University, College of Life Science, Department of Biochemistry and Molecular BiologyHengyangPeople’s Republic of China

Personalised recommendations