, Volume 31, Issue 2, pp 133–140 | Cite as

Japanese Encephalitis Virus Envelope Protein Mitigates TNF-α mRNA Expression in RAW264.7 Cells

  • Tsai-Ching Hsu
  • Ji-Qiang Gao
  • Ko-Hsiu Lu
  • Chang-Hai Tsai
  • Chih-Yang Huang
  • Bor-Show Tzang


Japanese encephalitis virus (JEV) is known as an important mosquito-borne human pathogen that causes Japanese encephalitis and may lead to lethal effect. Since monocyte has been demonstrated to play transmissible role for JEV, rare study is reported to clarify the effect of JEV envelope (JEVE) protein on monocyte. This study intends to investigate the effects of JEVE protein inside monocyte. Notably, significant decreased expression of tumour necrosis factor (TNF)-α mRNA in RAW264.7 cells transfected with pEGFP-JEVE was observed as compared to those cells transfected with pEGFP. Increased p21Waf1/Cip1 protein was observed in both pEGFP and pEGFP-JEVE transfected RAW264.7 cells. However, increased p53 protein was only detected in pEGFP-transfected cells but not pEGFP-JEVE transfected cells as well as the result that no increased expression of nuclear factor-kB was observed in pEGFP-JEVE transfected cells. These experimental results indicate the effects of JEVE protein in alleviating TNF-α mRNA expression that is associated with the increased p53-independent p21Waf1/Cip1 expression and provide an explanation in the role of JEV transmission through monocyte.

Key words

Japanese encephalitis virus monocyte envelope protein TNF-α p21Waf1/Cip1 



Japanese encephalitis virus


tumour necrosis factor


nuclear factor-kB



This study was supported by the grant CSMU 95-OM-B-030 from Chung Shan Medical University, Taichung, Taiwan, R.O.C.


  1. 1.
    Kitano, T., K. Suzuki, and T. Yamaguchi. 1974. Morphological, chemical, and biological characterization of Japanese encephalitis virus virion and its hemagglutinin. J. Virol. 14:631–639.PubMedGoogle Scholar
  2. 2.
    Chamber, T. J., C. S. Hahn, R. Galler, and C. M. Rice. 1990. Flavivirus genome organization, expression and replication. Annu. Rev. Microbiol. 44:649–688.CrossRefGoogle Scholar
  3. 3.
    Zhang, F., Q. Huang, W. Ma, S. Jiang, Y. Fan, and H. Zhang. 2001. Amplification and cloning of the fulllength genome of Japanese encephalitis virus by a novel long RT-PCR protocol in a cosmid vector. J. Virol. Methods 96:171–182.PubMedCrossRefGoogle Scholar
  4. 4.
    Umenai, T., R. Krzysko, T. A. Bektimirov, and F. A. Assaad. 1985. Japanese encephalitis: current worldwide status. Bull. World Health Organ. 63:625–631.PubMedGoogle Scholar
  5. 5.
    Takegami, T., H. Miyamoto, H. Nakamura, and K. Yasui. 1982. Biological activities of the structural proteins of Japanese encephalitis virus. Acta. Virol. 26:312–320.PubMedGoogle Scholar
  6. 6.
    McMinn, P. C.. 1997. The molecular basis of virulence of the encephalogenic flaviviruses. J. Gen. Virol. 78:2711–2722.PubMedGoogle Scholar
  7. 7.
    Mason, P. W., S. Pincus, M. J. Fournier, T. L. Mason, R. E. Shope, and E. Paoletti. 1991. Japanese encephalitis virus-vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology 180:294–305.PubMedCrossRefGoogle Scholar
  8. 8.
    Konishi, E., S. Pincus, E. Paoletti, R. E. Shope, T. Burrage, and P. W. Mason. 1992. Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology 188:714–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen, S. O., T. J. Chang, G. Stone, C. H. Chen, and J. J. Liu. 2006. Programmed cell death induced by Japanese encephalitis virus YL vaccine strain or its recombinant envelope protein in varied cultured cells. Intervirology 49:346–351.PubMedCrossRefGoogle Scholar
  10. 10.
    Yang, K. D., W. T. Yeh, R. F. Chen, H. L. Chuon, H. P. Tsai, C. W. Yao, and M. F. Shaio. 2004. A model to study neurotropism and persistency of Japanese encephalitis virus infection in human neuroblastoma cells and leukocytes. J. Gen. Virol. 85:635–642.PubMedCrossRefGoogle Scholar
  11. 11.
    Ravi, V., S. Parida, A. Desai, A. Chandramuki, M. Gourie-Devi, and G. E. Grau. 1997. Correlation of tumor necrosis factor levels in the serum and cerebrospinal fluid with clinical outcome in Japanese encephalitis patients. J. Med. Virol. 51:132–136.PubMedCrossRefGoogle Scholar
  12. 12.
    Shimizu, A., T. Ogata, and M. Kitaoka. 1977. Biological and immunological studies on two substrains, c-1 and c-3, derived from the Nakayama-NIH strain of Japanese encephalitis virus. Intervirology 8:52–59.PubMedCrossRefGoogle Scholar
  13. 13.
    Wu, S. C., W. C. Lian, L. C. Hsu, Y. C. Wu, and M. Y. Liau. 1998. Antigenic characterization of nine wild-type Taiwanese isolates of Japanese encephalitis virus as compared with two vaccine strains. Virus Res. 55:83–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Bonnerot, C., D. Rocancourt, P. Briand, G. Grimber, and J. F. Nicolas. 1987. A β-galactosidase hybrid protein targeted to nuclei as a marker for developmental studies. Proc. Natl. Acad. Sci. U. S. A. 84:6795–6799.PubMedCrossRefGoogle Scholar
  15. 15.
    Laemmli, U. K.. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–684.PubMedCrossRefGoogle Scholar
  16. 16.
    Hayden, M. S., and S. Ghosh. 2004. Signaling to NF-kB. Genes Dev. 18:2195–2224.PubMedCrossRefGoogle Scholar
  17. 17.
    Bonizzi, G., and M. Karin. 2004. The two NF-kB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25:280–288.PubMedCrossRefGoogle Scholar
  18. 18.
    Jimi, E., and S. Ghosh. 2005. Role of nuclear factor-kappaB in the immune system and bone. Immunol. Rev. 208:80–87.PubMedCrossRefGoogle Scholar
  19. 19.
    Canman, C. E., T. M. Gilmer, S. B. Coutts, and M. B. Kastan. 1995. Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev. 9:600–611.PubMedCrossRefGoogle Scholar
  20. 20.
    Levine, A. J.. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.PubMedCrossRefGoogle Scholar
  21. 21.
    Takeda, A., and N. Takeda. 1999. Stress signal to survival and apoptosis. Ann. N. Y. Acad. Sci. 874:427–435.PubMedCrossRefGoogle Scholar
  22. 22.
    Chiarugi, V., L. Magnelli, M. Cinelli, and G. Basi. 1994. Apoptosis and the cell cycle. Cell Mol. Biol. Res. 40:603–612.PubMedGoogle Scholar
  23. 23.
    Gartel, A. L., M. S. Serfas, and A. L. Tyner. 1996. p21-negative regulator of the cell cycle. Proc. Soc. Exp. Biol. Med. 213:138–149.PubMedGoogle Scholar
  24. 24.
    Cox, L. S. 1997. Multiple pathways control cell growth and transformation: overlapping and independent activities of p53 and p21Cip1/WAF1/Sdi1. J. Pathol. 183:134–140.PubMedCrossRefGoogle Scholar
  25. 25.
    Gartel, A. L., and A. L. Tyner. 1998. The growth-regulatory role of p21 (WAF1/CIP1). Prog. Mol. Subcell. Biol. 20:43–71.PubMedGoogle Scholar
  26. 26.
    Figarola, J. L., N. Shanmugam, R. Natarajan, and S. Rahbar. 2007. Anti-inflammatory effects of the advanced glycation end product inhibitor LR-90 in human monocytes. Diabetes 56:647–655.PubMedCrossRefGoogle Scholar
  27. 27.
    Ozato, K., H. Tsujimura, and T. Tamura. 2002. Toll-like receptor signaling and regulation of cytokine gene expression in the immune system. Biotechniques Suppl, 66–8, 70, 72 passim.Google Scholar
  28. 28.
    Kaisho, T., and S. Akira. 2001. Toll-like receptors and their signaling mechanism in innate immunity. Acta Odontol. Scand. 59:124–130.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tsai-Ching Hsu
    • 1
  • Ji-Qiang Gao
    • 2
  • Ko-Hsiu Lu
    • 3
    • 4
  • Chang-Hai Tsai
    • 5
  • Chih-Yang Huang
    • 6
    • 7
    • 8
  • Bor-Show Tzang
    • 2
  1. 1.Institute of ImmunologyChung Shan Medical UniversityTaichungRepublic of China
  2. 2.Institute of Biochemistry and BiotechnologyChung Shan Medical UniversityTaichungRepublic of China
  3. 3.School of MedicineChung Shan Medical UniversityTaichungRepublic of China
  4. 4.Department of Orthopaedic SurgeryChung Shan Medical University HospitalTaichungRepublic of China
  5. 5.Department of Healthcare AdministrationAsia UniversityTaichungRepublic of China
  6. 6.Graduate Institute of Chinese Medical ScienceChina Medical UniversityTaichungRepublic of China
  7. 7.Institute of Basic Medical ScienceChina Medical UniversityTaichungRepublic of China
  8. 8.Department of Health and Nutrition BiotechnologyAsia UniversityTaichungRepublic of China

Personalised recommendations