, Volume 30, Issue 5, pp 153–160 | Cite as

Eosinophil Cationic Protein Stimulates TGF-β1 Release by Human Lung Fibroblasts In Vitro

  • Ulrika Zagai
  • Elham Dadfar
  • Joachim Lundahl
  • Per Venge
  • C. Magnus Sköld


Eosinophilic inflammation and airway remodeling are features of asthma. Eosinophil cationic protein (ECP) is released by activated eosinophils and transforming growth factor (TGF)-β1 has major functions in the fibrotic process. We therefore hypothesized that ECP stimulates TGF-β1 release by human lung fibroblasts. Fibroblasts in monolayer displayed a constitutive release of TGF-β1, which increased in presence of ECP (436 ± 60 vs. 365 ± 48 pg/ml at 48 h; P < 0.01). mRNA expression of TGF-β1 was almost twofold in ECP-stimulated fibroblasts. ECP in three-dimensional cultures stimulated both TGF-β1 release (180 ± 61 vs. 137 ± 54 pg/ml; P < 0.01) and fibroblast-mediated collagen gel contraction (28 vs. 39% of initial gel area at 48 h; P < 0.001). ECP stimulates TGF-β1-release by human lung fibroblasts, suggesting a potential mechanism for eosinophils in the fibrotic response. This may be an important mechanism by which ECP promotes remodeling of extra cellular matrix leading to airway fibrosis in asthmatics.

Key words

airway remodeling ECP eosinophil fibroblast TGF-β 



The authors would like to thank Professor Rolf Lewensohn at the Cancer Centrum Karolinska, for letting us use equipment for DNA analysis and Per Näsman at the Royal Institute of Technology, for assistance with statistical analysis. For the preparation and characterization of ECP the work of Lena Moberg and Agneta Trulson is greatly appreciated. The financial support from the Swedish Heart–Lung Foundation, Cancer and Allergy Foundation, Swedish Foundation for Health Care Science and Allergy Research, Hesselman Foundation, Boehringer-Ingelheim/Pfizer, the Swedish Research Council and Karolinska Institutet is greatly appreciated.


  1. 1.
    Wilson, J. W., and T. L. Bamford. 2001. Assessing the evidence for remodelling of the airway in asthma. Pulm. Pharmacol. Ther. 14:229–247.PubMedCrossRefGoogle Scholar
  2. 2.
    Venge, P., J. Bystrom, M. Carlson, L. Hakansson, M. Karawacjzyk, C. Peterson, L. Seveus, and A. Trulson. 1999. Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin. Exp. Allergy 29:1172–1186.PubMedCrossRefGoogle Scholar
  3. 3.
    Martin, L. B., H. Kita, K. M. Leiferman, and G. J. Gleich. 1996. Eosinophils in allergy: role in disease, degranulation, and cytokines. Int. Arch. Allergy Immunol. 109:207–215.PubMedCrossRefGoogle Scholar
  4. 4.
    Venge, P. 2004. Monitoring the allergic inflammation. Allergy 59:26–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Sime, P., G. Tremblay, Z. Xing, B. Sarnstrand, J. Gauldie. 1997. Asthma, A. Woolcock ed. Lippincott-Raven Publishers, Philadelphia, pp. 475–489.Google Scholar
  6. 6.
    Diegelmann, R. F., and M. C. Evans. 2004. Wound healing: an overview of acute, fibrotic and delayed healing. Front. Biosci. 9:283–289.PubMedCrossRefGoogle Scholar
  7. 7.
    Zagai U, C. M. Skold, A. Trulson, P. Venge, and J. Lundahl. 2004. The effect of eosinophils on collagen gel contraction and implications for tissue remodelling. Clin. Exp. Immunol. 135:427–433.PubMedCrossRefGoogle Scholar
  8. 8.
    Bell, E., B. Ivarsson, and C. Merrill. 1979. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. U.S.A. 76:1274–1278.PubMedCrossRefGoogle Scholar
  9. 9.
    Grinnell, F. 1994. Fibroblasts, myofibroblasts, and wound contraction. J. Cell Biol. 124:401–404.PubMedCrossRefGoogle Scholar
  10. 10.
    Adachi, Y., T. Mio, K. Takigawa, I. Striz, D. J. Romberger, J. R. Spurzem, and S. I. Rennard. 1998. Fibronectin production by cultured human lung fibroblasts in three-dimensional collagen gel culture. In Vitro Cell Dev. Biol. Anim. 34:203–210.PubMedCrossRefGoogle Scholar
  11. 11.
    Ohga, E., T. Matsuse, S. Teramoto, and Y. Ouchi. 2000. Activin receptors are expressed on human lung fibroblast and activin A facilitates fibroblast-mediated collagen gel contraction. Life Sci. 66:1603–1613.PubMedCrossRefGoogle Scholar
  12. 12.
    Mio, T., X. Liu, M. L. Toews, Y. Adachi, D. J. Romberger, J. R. Spurzem, and S. I. Rennard. 2001. Bradykinin augments fibroblast-mediated contraction of released collagen gels. Am. J. Physiol. Lung. Cell Mol. Physiol. 281:L164–L171.Google Scholar
  13. 13.
    Liu, X., T. Kohyama, H. Wang, Y. K. Zhu, F. Q. Wen, H. J. Kim, D. J. Romberger, and S. I. Rennard. 2002. Th2 cytokine regulation of type I collagen gel contraction mediated by human lung mesenchymal cells. Am. J. Physiol. Lung. Cell Mol. Physiol. 282:L1049–L1056.Google Scholar
  14. 14.
    Peterson, C. G., H. Jornvall, and P. Venge. 1988. Purification and characterization of eosinophil cationic protein from normal human eosinophils. Eur. J. Haematol. 40:415–423.PubMedCrossRefGoogle Scholar
  15. 15.
    Elsdale, T., J. Bard. 1972. Collagen substrata for studies on cell behavior. J. Cell Biol. 54:626–637.PubMedCrossRefGoogle Scholar
  16. 16.
    Zagai, U., K. Fredriksson, S. I. Rennard, J. Lundahl, and C. M. Skold. 2003. Platelets stimulate fibroblast-mediated contraction of collagen gels. Respir. Res. 4:13.PubMedCrossRefGoogle Scholar
  17. 17.
    Abe, M., J. G. Harpel, C. N. Metz, I. Nunes, D. J. Loskutoff, and D. B. Rifkin. 1994. An assay for transforming growth factor-beta using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Anal. Biochem. 216:276–284.PubMedCrossRefGoogle Scholar
  18. 18.
    Haagmans, B. L., J. W. Hoogerbrugge, A. P. Themmen, and K. J. Teerds. 2003. Rat testicular germ cells and sertoli cells release different types of bioactive transforming growth factor beta in vitro. Reprod. Biol. Endocrinol. 1:3.PubMedCrossRefGoogle Scholar
  19. 19.
    Mio, T., Y. Adachi, D. J. Romberger, R. F. Ertl, and S. I. Rennard. 1996. Regulation of fibroblast proliferation in three-dimensional collagen gel matrix. In Vitro Cell Dev. Biol. Anim. 32:427–433.PubMedGoogle Scholar
  20. 20.
    Montgomery, D. C. 1991. Design and Analysis of Experiments. John Wiley & Sons, New York.Google Scholar
  21. 21.
    Daniel, W. W. 1995. Biostatistics: A Foundation for Analysis in the Health Sciences. John Wiley & Sons, New York.Google Scholar
  22. 22.
    Claeys, S., H. Van Hoecke, G. Holtappels, P. Gevaert, T. De Belder, B. Verhasselt, P. Van Cauwenberge, and C. Bachert. 2005. Nasal polyps in patients with and without cystic fibrosis: a differentiation by innate markers and inflammatory mediators. Clin. Exp. Allergy 35:467–472.PubMedCrossRefGoogle Scholar
  23. 23.
    Hernnas, J., B. Sarnstrand, P. Lindroth, C. G. Peterson, P. Venge, and A. Malmstrom. 1992. Eosinophil cationic protein alters proteoglycan metabolism in human lung fibroblast cultures. Eur. J. Cell Biol. 59:352–363.PubMedGoogle Scholar
  24. 24.
    Bartram, U., and C. P. Speer. 2004. The role of transforming growth factor beta in lung development and disease. Chest 125:754–765.PubMedCrossRefGoogle Scholar
  25. 25.
    Chapman, H. A. 2004. Disorders of lung matrix remodeling. J. Clin. Invest. 113:148–57.PubMedCrossRefGoogle Scholar
  26. 26.
    Kunz-Schughart, L. A., S. Wenninger, T. Neumeier, P. Seidl, and R. Knuechel. 2003. Three-dimensional tissue structure affects sensitivity of fibroblasts to TGF-beta 1. Am. J. Physiol. Cell Physiol. 284:C209–C219.Google Scholar
  27. 27.
    Gaissmaier, C., J. Fritz, T. Krackhardt, I. Flesch, W. K. Aicher, and N. Ashammakhi. 2005. Effect of human platelet supernatant on proliferation and matrix synthesis of human articular chondrocytes in monolayer and three-dimensional alginate cultures. Biomaterials 26:1953–1960.PubMedCrossRefGoogle Scholar
  28. 28.
    Fukamizu, H, and F. Grinnell. 1990. Spatial organization of extracellular matrix and fibroblast activity: effects of serum, transforming growth factor beta, and fibronectin. Exp. Cell Res. 190:276–282.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee, Y. M., S. S. Kim, H. A. Kim, Y. J. Suh, S. K. Lee, D. H. Nahm, and H. S. Park. 2003. Eosinophil inflammation of nasal polyp tissue: relationships with matrix metalloproteinases, tissue inhibitor of metalloproteinase-1, and transforming growth factor-beta1. J. Korean Med. Sci. 18:97–102.PubMedGoogle Scholar
  30. 30.
    Buron, E., J. A. Garrote, E. Arranz, P. Oyaguez, J. L. Fernandez Calvo, and A. Blanco Quiros. 1999. Markers of pulmonary inflammation in tracheobronchial fluid of premature infants with respiratory distress syndrome. Allergol. Immunopathol. (Madr). 27:11–17.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ulrika Zagai
    • 1
  • Elham Dadfar
    • 2
  • Joachim Lundahl
    • 2
  • Per Venge
    • 3
  • C. Magnus Sköld
    • 1
  1. 1.Division of Respiratory Medicine, Department of Medicine, Karolinska InstitutetStockholmSweden
  2. 2.Division of Clinical Immunology and Allergy, Department of Medicine, Karolinska InstitutetKarolinska University HospitalStockholmSweden
  3. 3.Department of Medical Sciences, Clinical ChemistryUniversity of UppsalaUppsalaSweden

Personalised recommendations