Inflammation

, 30:52 | Cite as

Ozonotherapy in an Induced Septic Shock. I. Effect of Ozonotherapy on Rat Organs in Evaluation of Free Radical Reactions and Selected Enzymatic Systems

  • Pawel Madej
  • Andrzej Plewka
  • Janusz A. Madej
  • Marcin Nowak
  • Danuta Plewka
  • Grzegorz Franik
  • Darek Golka
Article

Abstract

The confirmed advantageous effects of oxygen/ozone therapy in several clinical conditions stimulated experimental studies on effects of the therapy in rats with an induced septic shock. The studies were conducted on adult male rats of Wistar strain. Four groups of the animals, each of 15 rats, included: I—control group, (C); II—animals intraperitoneally administered with O2/O3 (CO), III—rats given of Escherichia coli endotoxin (lipopolysaccharide—LPS) (CL), IV—rats administered with the lipopolysaccharide plus administered with the oxygen/ozone mixture (OL). Activities of catalase and superoxide dismutase and of free radical reactions were estimated. The exposure to LPS augmented activities of SOD and of catalase in liver, lungs and heart. In all the examined organs LPS induced significant changes in levels of free radicals. Except of the lungs, parallel administration of the rats with LPS and ozone/oxygen revoked development of the alterations. The obtained results point to a strong, stabilizing and regenerative effect of ozonotherapy.

Key words

septic shock ozonotherapy oxidative stress free radicals rats 

References

  1. 1.
    Barriere, S. L., and J. B. Guglielmo. 1992. Gram-negative sepsis, the sepsis syndrome and the role of antiendotoxin monoclonal antibodies. Clin. Pharm. 11:223–232.PubMedGoogle Scholar
  2. 2.
    Madej, P., Z. Antoszewski, and J. A. Madej. 1995. Ozonotherapy. Mater Med. Pol. 27:53–56.PubMedGoogle Scholar
  3. 3.
    Laszczyca, P., E. Kawka-Serwecinska, I. Witas, B. Dolezych, B. Falkus, A. Mekail, B. Ziolkowska, P. Madej, and P. Migula. 1996. Lipid peroxidation and activity of antioxidative enzymes in the rat model of ozone therapy. Mater Med. Pol. 28:155–160.Google Scholar
  4. 4.
    Leon, O. S., S. Menendez, N. Merino, R. Castillo, S. Sam, L. Perez, E. Cruz, and V. Bocci. 1998. Ozone oxidative preconditioning: a protection against cellular damage by free radicals. Mediat. Inflamm. 7:289–294.CrossRefGoogle Scholar
  5. 5.
    Barber, E., S. Menendez, O. S. Leon, M. O. Barber, N. Merino, J. L. Calunga, E. Cruz, and V. Bocci. 1999. Prevention of renal injury after induction of ozone tolerance in rats submitted to warm ischaemia. Mediat. Inflamm. 8:37–41.CrossRefGoogle Scholar
  6. 6.
    Fridovich, I. 1976. Superoxide dismutases: studies of structure and mechanism. Adv. Exp. Med. Biol. 74:530–539.PubMedGoogle Scholar
  7. 7.
    Yim, M. B., P. B. Chock, and E. R. Stadtman. 1993. Enzyme function of copper, zinc superoxide dismutase as a free radical generator. J. Biol. Chem. 268:4099–4105.PubMedGoogle Scholar
  8. 8.
    Geller, B. L., and D. R. Winge. 1982. Rat liver Cu,Zn-superoxide dismutase. Subcellular location in lysosomes. J. Biol. Chem. 257:8945–8952.PubMedGoogle Scholar
  9. 9.
    Boveris, A., S. Alvarez, and A. Navarro. 2002. The role of mitochondrial nitric oxide synthase in inflammation and septic shock. Free Radic. Biol. Med. 33:1186–1193.PubMedCrossRefGoogle Scholar
  10. 10.
    Hirata, Y., and S. Ishimaru. 2002. Effects of endothelin receptor antagonists on endothelin-1 and inducible nitric oxide synthase genes in a rat endotoxic shock model. Clin. Sci. (Lond) 103(Suppl 48):332S–335S.Google Scholar
  11. 11.
    Reade, M. C., and J. D. Young. 2003. Of mice and men (and rats): implications of species and stimulus differences for the interpretation of studies of nitric oxide in sepsis. Br. J. Anaesth. 90:115–118.PubMedCrossRefGoogle Scholar
  12. 12.
    Canada, A. T., E. J. Calabrese, and D. Leonard. 1986. Age-dependent inhibition of pentobarbital sleeping time by ozone in mice and rats. J. Gerontol. 41:587–589.PubMedGoogle Scholar
  13. 13.
    Rilling, S., and R. Viebahn. 1990. Praxis der Ozon-Sauerstoff-Therapie, E. Fischer ed., Verlag fur Medizin, Heidelberg.Google Scholar
  14. 14.
    Hatch, G., R. Slade, L. Harris, W. McDonnel, R. Devlin, H. Koren, D. Costa, and J. McKee. 1994. Ozone dose and effect in humans and rats. A comparison using oxygen-18 labeling and bronchoalveolar lavage. Am. J. Respir. Crit. Care Med. 150:676–683.PubMedGoogle Scholar
  15. 15.
    Korbut, R., and J. Gryglewski. 1996. The effect of prostacyclin and nitric oxide on deformability of red blood cells in septic shock in rats. J. Physiol. Pharmacol. 47:591–599.PubMedGoogle Scholar
  16. 16.
    Jimba, M., W. Skornik, C. Killinsworth, N. Long, J. Brain, and S. Shore. 1995. Role of C fibers in physiological responses to ozone in rats. J. Appl. Physiol. 78:1757–1763.PubMedCrossRefGoogle Scholar
  17. 17.
    Verrazzo, G., L. Coppola, C. Luongo, A. Sammartino, R. Giunta, A. Grassia, R. Ragone, and A. Tirelli. 1995. Hyperbaric oxygen, oxygen-ozone therapy, and rheologic parameters of blood in patients with peripheral occlusive arterial disease. Undersea Hyperb. Med. 22:17–22.PubMedGoogle Scholar
  18. 18.
    Young, C., and D. K. Bhalla. 1995. Effects of ozone on the epithelial and inflammatory responses in the airways: role of tumor necrosis factor. J. Toxicol. Environ. Health 46:329–342.PubMedGoogle Scholar
  19. 19.
    Wielgus-Serafińska, E., A. Plewka, and M. Kamiński. 1993.Circadian variation of mitochondrial succinic dehydrogenase and microsomal cytochrome P-450 dependent monooxygenase activity in the liver of sexually immature and mature rats. J. Physiol. Pharmacol. 44:55–63.PubMedGoogle Scholar
  20. 20.
    Czekaj, P., A. Plewka, M. Kamiński, G. Nowaczyk, K. Pawlicki, and E. Wielgus-Serafińska. 1994. Daily and circadian rhythms in the activity of mixed function oxidases system in rats of different age. Biol. Rhythm. Res. 25:67–75.Google Scholar
  21. 21.
    Misra, H. P., and I. Fridovich. 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247:3170–3175.PubMedGoogle Scholar
  22. 22.
    Aebi, M. 1974. Catalase, methods of enzymatic analysis. In: H. Bermeyer ed., Academic Press, NY, pp. 674–678.Google Scholar
  23. 23.
    Madej, J. A., C. Kaszubkiewicz, M. Mazurkiewicz, S. Klientowski, and L. Fiszer. 1983. Test of usage chemiluminescence in diagnosis of lymphatic leukaemia P388 in mice. Med. Wet. 39:682–685.Google Scholar
  24. 24.
    Niwa, Y. 1989. Lipid peroxides and superoxide dismutase (SOD) induction in skin inflammatory diseases, and treatment with SOD preparations. Dermatologica 179(Suppl 1):101–106.PubMedCrossRefGoogle Scholar
  25. 25.
    Iizawa, O., T. Kato, H. Tagami, and Y. Niwa. 1991. Lipid peroxides and superoxide dismutase activity in trichophyte lesions. Arch. Dermatol. 127:1241–1243.PubMedCrossRefGoogle Scholar
  26. 26.
    Gregory, E. M., S. A. Goscin, and I. Fridovich. 1974. Superoxide dismutase and oxygen toxicity in a eukaryote. J. Bacteriol. 117:456–460.PubMedGoogle Scholar
  27. 27.
    Archibald, F. 2003. Oxygen toxicity and the health and survival of eukaryote cells: a new piece is added to the puzzle. Proc. Natl. Acad. Sci. U.S.A. 100:10141–10143.PubMedCrossRefGoogle Scholar
  28. 28.
    Aruoma, O. I., B. Halliwell, and M. Dizdaroglu. 1989. Iron ion-dependent modification of bases in DNA by the superoxide radical-generating system hypoxanthine/xanthine oxidase. J. Biol. Chem. 264:13024–13028.PubMedGoogle Scholar
  29. 29.
    Takehara, Y., K. Yamaoka, E. F. Sato, T. Yoshioka, and K. Utsumi. 1994. DNA damage by various forms of active oxygens and its inhibition by different scavengers using plasmid DNA. Physiol. Chem. Phys. Med. NMR 26:215–226.PubMedGoogle Scholar
  30. 30.
    Wolff, S. P., and R. T. Dean. 1986. Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochem. J. 234:399–403.PubMedGoogle Scholar
  31. 31.
    Davies, K. J. 1987. Protein damage and degradation by oxygen radicals. I. general aspects. J. Biol. Chem. 262:9895–9901.PubMedGoogle Scholar
  32. 32.
    Halliwell, B., and J. M. Gutteridge. 1988. Free radicals and antioxidant protection: mechanisms and significance in toxicology and disease. Human Toxicol. 7:7–13.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Pawel Madej
    • 1
  • Andrzej Plewka
    • 2
  • Janusz A. Madej
    • 3
  • Marcin Nowak
    • 3
  • Danuta Plewka
    • 4
  • Grzegorz Franik
    • 1
  • Darek Golka
    • 5
  1. 1.Department and Clinic of Gynaecological EndocrinologyMedical University of SilesiaKatowicePoland
  2. 2.Department of Protein Chemistry and EnzymologyMedical University of SilesiaSosnowiecPoland
  3. 3.Department of Pathological Anatomy and Forensic MedicineVeterinary AcademyWroclawPoland
  4. 4.Department of Histology and EmbryologyMedical University of SilesiaKatowicePoland
  5. 5.Department of PathomorphologyMedical University of SilesiaKatowicePoland

Personalised recommendations