, Volume 28, Issue 5, pp 285–290 | Cite as

The Cyclooxygenase-2 Inhibitor Celecoxib Is a Potent Inhibitor of Human Carbonic Anhydrase II

  • James F. Knudsen
  • Uno Carlsson
  • Per Hammarström
  • Gerald H. Sokol
  • Louis R. Cantilena


Cyclooxygenase-2 (COX-2) is up-regulated in stromal and inflammatory cells. The inducible COX-2 isoform is expressed during inflammation, in some cancers, and in brain tissue after global and focal ischemia. Tissue acidosis is a dominant factor in inflammation, and contributes to pain and hyperalgesia. Recently, compelling epidemiological and clinical evidence has documented the COX-independent effects of some COX-2 inhibitors (i.e., celecoxib, valdecoxib, and rofecoxib); among these effects are carbonic anhydrase (CA) inhibition. Carbonic anhydrases are zinc metalloenzymes expressed in various cell types, including those of the kidney, where they act as general acid–base catalysts. The kidneys are also known to express the highest concentration of COX-2 messenger ribonucleic acid. Celecoxib, like the prototypic CA inhibitor acetazolamide, is structurally characterized by an unsubstituted sulfonamide moiety. In the present study, we report that celecoxib exhibits the characteristics of a potent CA inhibitor, showing inhibitory human carbonic anhydrase II (hCAII) activity in the nanomolar range. Valdecoxib was relatively less potent. Rofecoxib, which lacks the unsubstituted sulfonamide moiety characteristic of CA inhibitors, showed no significant hCAII inhibitory activity. The current study corroborates our earlier report of structure-activity relationships as predictors of such metabolic events as hyperchloremia, acidosis, and changes in calcium and phosphate disposition; and clinical manifestations associated with CA inhibition reported with celecoxib. These data showing inhibition of hCAII by the unsubstituted sulfonamides celecoxib and valdecoxib, but not by rofecoxib, may have important implications for the elucidation of the mechanisms of action as well as the side effects associated with COX-2 inhibitors.

Key Words

COX-2 celecoxib carbonic anhydrase bicarbonate inflammation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eras, J., and M. Perazella. 2001. NSAIDs and the kidney revisited: Are selective cyclooxygenase-2 inhibitors safe? [Review]. Am. J. Med. Sci. 321:181–190.CrossRefPubMedGoogle Scholar
  2. 2.
    Mukherjee, D., S. Nissen, and E. J. Topol. 2001. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 286:954–959.PubMedGoogle Scholar
  3. 3.
    Smith, W. L., and D. L. DeWitt. 1996. Prostaglandin endoperoxide H synthases-1 and -2 [Review]. Adv. Immunol. 62:167– 215.PubMedGoogle Scholar
  4. 4.
    Merck Announces Voluntary Worldwide Withdrawal of Vioxx [News Release]. September 30, 2004. Merck & Co., Whitehouse Station, NJ.Google Scholar
  5. 5.
    Pfizer Provides Information to Healthcare Professionals About its Cox-2 Medicine Bextra® (Valdecoxib) [News Release]. October 15, 2004. Pfizer, New York.Google Scholar
  6. 6.
    Smith, W. L., R. M. Garavito, and D. L. DeWitt. 1996. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2 [Review]. J. Biol. Chem. 271:33157–33160.CrossRefPubMedGoogle Scholar
  7. 7.
    Subongkot, S., D. Frame, W. Leslie, and D. Drajer. 2003. Selective cyclooxygenase-2 inhibition: A target in cancer prevention and treatment [Review]. Pharmacotherapy 23:9–28.CrossRefPubMedGoogle Scholar
  8. 8.
    Müller, G. 2003. Medicinal chemistry of target family-directed masterkeys [Review]. Drug Discov. Today 8:681–691.CrossRefPubMedGoogle Scholar
  9. 9.
    Knudsen, J. F., G. H. Sokol, and L. R. Cantilena. 2003. Structure-activity relationships as predictors of adverse drug events (ADEs). Clin. Pharmacol. Ther. 73:39 (Abstract).Google Scholar
  10. 10.
    Physicians’ Desk Reference, 55th ed., 2001. Medical Economics Company, Montvale, NJ, 2903.Google Scholar
  11. 11.
    DuBose, T. D., and L. L. Hamm (eds.). 2002. Acid–Base and Electrolyte Disorders. A Companion to Brenner and Rector’s The Kidney, Saunders, Philadelphia.Google Scholar
  12. 12.
    Knudsen, J. F., U. Carlsson, P. Hammarstrüm, G. H. Sokol, and L. R. Cantilena. 2004. Cox-2 inhibitors and carbonic anhydrase activity.Clin. Pharmacol. Ther. 75:44. Abstract.Google Scholar
  13. 13.
    Belsky, H. 1953. Use of new oral diuretic, diamox, in congestive heart disease. N. Engl. J. Med. 249:140–143.PubMedGoogle Scholar
  14. 14.
    Maren, T. H. 1967. Carbonic anhydrase: Chemistry, physiology, and inhibition [Review]. Physiol. Rev. 47:595–781.PubMedGoogle Scholar
  15. 15.
    Beyer, K., and J. Baer. 1961. Physiological basis for the action of newer diuretic agents. Pharmacol. Rev. 40:517– 562.Google Scholar
  16. 16.
    Chegwidden, W. R., and N. D. Carter. 2000. Introduction to the carbonic anhydrases. In: The Carbonic Anhydrases. New Horizons, W. R. Chegwidden, N. D. Carter, and Y. H. Edwards, eds. Birkháuser Verlag, Basel, Switzerland, pp. 13–28.Google Scholar
  17. 17.
    Hsu, H. H., and B. G. Abbo. 2004. Role of bicarbonate/CO2 buffer in the initiation of vesicle mediated calcification: Mechanisms of aortic calcification related to atherosclerosis. Biochim. Biophys. Acta. 1690:118–123.PubMedGoogle Scholar
  18. 18.
    Saini, S. S., D. L. Gessell-Lee, and J. W. Peterson. 2003. The Cox-2 specific inhibitor celecoxib inhibits adenylyl cyclase. Inflammation 27:79–88.CrossRefPubMedGoogle Scholar
  19. 19.
    Moore, A. R., and D. A. Willoughby. 1995. The role of cAMP regulation in controlling inflammation [Review]. Clin. Exp. Immunol. 101:387–389.PubMedGoogle Scholar
  20. 20.
    Weber, A., A. Casini, A. Heine, D. Kuhn, C. T. Supuran, A.Scozzafava, and G. Klebe. 2004. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: New pharmacological opportunities due to related binding site recognition. J. Med. Chem. 47:550–557.CrossRefPubMedGoogle Scholar
  21. 21.
    Rickli, E. E., S. A. Ghazanfar, B. H. Gibbons, and J. T. Edsall. 1964. Carbonic anhydrases from human erythrocytes. Preparation and properties of two enzymes. J. Biol. Chem. 239:1065–1078.PubMedGoogle Scholar
  22. 22.
    Freskgård, P. O., U. Carlsson, L. G. Mårtensson, and B. H. Jonsson. 1991. Folding around the C-terminus of human carbonic anhydrase II. Kinetic characterization by use of a chemically reactive SH-group introduced by protein engineering. FEBS Lett. 289:117–122.CrossRefPubMedGoogle Scholar
  23. 23.
    Mårtensson, L. G., B. H. Jonsson, P. O. Freskgård, A. Kihlgren, M. Svensson, and U. Carlsson. 1993. Characterization of folding intermediates of human carbonic anhydrase II: Probing substructure by chemical labeling of SH groups introduced by site-directed mutagenesis. Biochemistry 32:224–231.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhu, J., X. Song, H. P. Lin, D. C. Young, S. Yan, V. E. Marquez, and C. S. Chen. 2002. Using cyclooxygenase-2 inhibitors as molecular platforms to develop a new class of apoptosis-inducing agents. J. Natl. Cancer Inst. 94:1745–1757.PubMedGoogle Scholar
  25. 25.
    Maderna, P., and C. Godson. 2003. Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim. Biophys. Acta. 1639:141–151.PubMedGoogle Scholar
  26. 26.
    McCormack, K., and K. Brune. 1991. Dissociation between the antinociceptive and anti-inflammatory effects of the nonsteroidal anti-inflammatory drugs. A survey of their analgesic efficacy. Drugs 41:533–547.PubMedGoogle Scholar
  27. 27.
    Song, X., H. P. Lin, A. J. Johnson, P. H. Tsang, Y. T. Yang, and S. K. Kulp. 2002. Cyclooxygenase-2, a player or spectator in cyclooxygenase-2 inhibitor-induced apoptosis in prostatic cancer cells. J. Natl. Cancer Inst}. 94:585–591.PubMedGoogle Scholar
  28. 28.
    Mori, M., R. J. Staniunas, G. F. Barnard, J. M. Jessup, G. D. Steele Jr., and L. B. Chen. 1993. The significance of carbonic anhydrase expression in human colorectal cancer. Gastroenterology 105:820–826.PubMedGoogle Scholar
  29. 29.
    Parkkila, S., A. K. Parkkila, T. Juvonen, V. P. Lehto, and H. Rajaniemi. 1995. Immunohistochemical demonstration of the carbonic anhydrase isoenzymes I and II in pancreatic tumors. Histochem. J. 27:133–138.PubMedGoogle Scholar
  30. 30.
    Parkkila, S., H. Rajaniemi, A. K. Parkkila, J. Kivelá, A. Waheed, S. Pastoreková, J. Pastorek, and W. S. Sly. 2000. Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc. Natl. Acad. Sci. U.S.A. 97:2220–2224.CrossRefPubMedGoogle Scholar
  31. 31.
    Puscas, I., M. Coltau, and R. Pasca. 1996. Nonsteroidal anti-inflammatory drugs activate carbonic anhydrase by a direct mechanism of action. J. Pharmacol. Exp. Ther. 277:1464–1466.PubMedGoogle Scholar
  32. 32.
    Paroutis, P., N. Touret, and S. Grinstein. 2004. The pH of secretory pathways: Measurement, determinants and regulation. Physiology 19:207–215.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • James F. Knudsen
    • 1
    • 4
  • Uno Carlsson
    • 2
  • Per Hammarström
    • 2
  • Gerald H. Sokol
    • 1
    • 3
  • Louis R. Cantilena
    • 1
  1. 1.Division of Clinical Pharmacology and Medical Toxicology, Department of MedicineUniformed Services University of the Health SciencesBethesdaMaryland
  2. 2.IFM-Department of ChemistryLinköping UniversityLinköpingSweden
  3. 3.New Hope Cancer CenterHudson
  4. 4.Smithsburg

Personalised recommendations