Skip to main content

First laser ions at the CERN-MEDICIS facility

Abstract

The CERN-MEDICIS facility aims to produce emerging medical radionuclides for the theranostics approach in nuclear medicine with mass separation of ion beams. To enhance the radioisotope yield and purity of collected samples, the resonance ionization laser ion source MELISSA was constructed, and provided the first laser ions at the facility in 2019. Several operational tests were accomplished to investigate its performance in preparation for the upcoming production of terbium radioisotopes, which are of particular interest for medical applications.

References

  1. 1.

    Jonson, B.: Exotic nuclei. Her. Russ. Acad. Sci. 89(3), 221–230 (2019). https://doi.org/10.1134/S1019331619030043

    Article  Google Scholar 

  2. 2.

    Catherall, R., Andreazza, W., Breitenfeldt, M., Dorsival, A., Focker, G. J., Gharsa, T. P., Giles, TJ, Grenard, J.-L., Locci, F., Martins, P., Marzari, S., Schipper, J., Shornikov, A., Stora, T.: The ISOLDE facility. J. Phys. G Nucl. Part Phys. 44(9), 094002 (2017). https://doi.org/10.1088/1361-6471/aa7eba

    ADS  Article  Google Scholar 

  3. 3.

    Dos Santos Augusto, R., Buehler, L., Lawson, Z., Marzari, S., Stachura, M., Stora, T.: CERN-MEDICIS (Medical Isotopes Collected from ISOLDE): A new facility. Appl. Sci. 4, 265–281 (2014). https://doi.org/10.3390/app4020265

    Article  Google Scholar 

  4. 4.

    Mu̇ller, C., Zhernosekov, K., Kȯster, U., Johnston, K., Dorrer, H., Hohn, A., Van Der Walt, N. T., Tu̇rler, A., Schibli, R.: A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β–radionuclide therapy: An in vivo proof-of-concept study with a new receptor-targeted folate derivative. J. Nucl. Med. 53(12), 1951–1959 (2012). https://doi.org/10.2967/jnumed.112.107540

    Article  Google Scholar 

  5. 5.

    Beyer, G.-J., Miederer, M., Vranjes-Duric, S., Comor, J. J., Künzi, G., Hartley, O., Senekowitsch-Schmidtke, R., Soloviev, D., Buchegger, F.: Targeted alpha therapy in vivo: direct evidence for single cancer cell kill using 149Tb-rituximab. Eur. J. Nucl. Med. Mol. Imaging 31(4), 547–554 (2004). https://doi.org/10.1007/s00259-003-1413-9

    Article  Google Scholar 

  6. 6.

    Umbricht, C. A., Köster, U., Bernhardt, P., Gracheva, N., Johnston, K., Schibli, R., van der Meulen, N. P., Müller, C.: Alpha-PET for Prostate Cancer: Preclinical investigation using 149Tb-PSMA-617. Sci. Rep. 9(1), 17800 (2019). https://doi.org/10.1038/s41598-019-54150-w

    ADS  Article  Google Scholar 

  7. 7.

    Müller, C., Singh, A., Umbricht, C.A., Kulkarni, H. R., Johnston, K., Benešová, M., Senftleben, S., Müller, D., Vermeulen, C., Schibli, R., Köster, U., van der Meulen, N. P., Baum, R. P.: Preclinical investigations and first-in-human application of 152Tb-PSMA-617 for PET/CT imaging of prostate cancer. EJNMMI Res. 9(1), 68 (2019). https://doi.org/10.1186/s13550-019-0538-1

    Article  Google Scholar 

  8. 8.

    Mu̇ller, C., Fischer, E., Behe, M., Kȯster, U., Dorrer, H., Reber, J., Haller, S., Cohrs, S., Blanc, A., Gru̇nberg, J., Bunka, M., Zhernosekov, K., van der Meulen, N., Johnston, K., Tu̇rler, A., Schibli, R.: Future prospects for SPECT imaging using the radiolanthanide terbium-155 - production and preclinical evaluation in tumor-bearing mice. Nucl. Med. Biol. 41(S), 58–65 (2014). https://doi.org/10.1016/j.nucmedbio.2013.11.002

    Article  Google Scholar 

  9. 9.

    Mu̇ller, C., Umbricht, C. A., Gracheva, N., Tschan, V. J., Pellegrini, G., Bernhardt, P., Zeevaart, J. R., Kȯster, U., Schibli, R., van der Meulen, N. P.: Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 46(9), 1919–1930 (2019). https://doi.org/10.1007/s00259-019-04345-0

    Article  Google Scholar 

  10. 10.

    Formento-Cavaier, R., Haddad, F., Sounalet, T., Stora, T., Zahi, I.: Terbium radionuclides for theranostics applications: A focus on MEDICIS-PROMED. Phys. Proc. 90(November 2016), 157–163 (2017). https://doi.org/10.1016/j.phpro.2017.09.053

    Article  Google Scholar 

  11. 11.

    Webster, B., Ivanov, P., Russell, B., Collins, S., Stora, T., Ramos, J. P., Kȯster, U., Robinson, A. P., Read, D.: Chemical purification of terbium-155 from pseudo-isobaric impurities in a mass separated source produced at CERN. Sci. Rep. 9 (1), 1–9 (2019). https://doi.org/10.1038/s41598-019-47463-3

    Article  Google Scholar 

  12. 12.

    Kreim, S., Atanasov, D., Beck, D., Blaum, K., Böhm, C., Borgmann, C., Breitenfeldt, M., Cocolios, T., Fink, D., George, S., Herlert, A., Kellerbauer, A., Köster, U., Kowalska, M., Lunney, D., Manea, V., Minaya Ramirez, E., Naimi, S., Neidherr, D., Nicol, T., Rossel, R., Rosenbusch, M., Schweikhard, L., Stanja, J., Wienholtz, F., Wolf, R., Zuber, K.: Recent exploits of the ISOLTRAP mass spectrometer. Nucl. Instrum. Methods Phys. Res. Section B: Beam Int. Mater. Atoms 317, 492–500 (2013). https://doi.org/10.1016/j.nimb.2013.07.072

    ADS  Article  Google Scholar 

  13. 13.

    Formento-Cavaier, R., Köster, U., Crepieux, B., Gadelshin, V., Haddad, F., Stora, T., Wendt, K.: Very high specific activity erbium 169Er production for potential receptor-targeted radiotherapy. Nucl. Instrum. Methods Phys. Res. Section B: Beam Int. Mater. Atoms 463, 468–471 (2020). https://doi.org/10.1016/j.nimb.2019.04.022

    ADS  Article  Google Scholar 

  14. 14.

    Mishin, V., Fedoseyev, V., Kluge, H.-J., Letokhov, V., Ravn, H., Scheerer, F., Shirakabe, Y., Sundell, S., Tengblad, O.: Chemically selective laser ion-source for the CERN-ISOLDE on-line mass separator facility. Nucl. Instrum. Methods Phys. Res. Section B: Beam Int. Mater. Atoms 73(4), 550–560 (1993). https://doi.org/10.1016/0168-583X(93)95839-W

    ADS  Article  Google Scholar 

  15. 15.

    Letokhov, V.: Laser photoionization spectroscopy. Academic Press, Orlando (1987)

    Google Scholar 

  16. 16.

    Kieck, T., Dorrer, H., Düllmann, C. E., Gadelshin, V., Schneider, F., Wendt, K.: Highly efficient isotope separation and ion implantation of 163Ho for the ECHo project. Nucl Instrum Methods Phys Res Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 945, 162602 (2019). https://doi.org/10.1016/j.nima.2019.162602

    Article  Google Scholar 

  17. 17.

    Gadelshin, V.M., Heinke, R., Kieck, T., Kron, T., Naubereit, P., Rösch, F., Stora, T., Studer, D., Wendt, K.: Measurement of the laser resonance ionization efficiency for lutetium. Radiochimica Acta 107(7), 653–661 (2019). https://doi.org/10.1515/ract-2019-3118

    Article  Google Scholar 

  18. 18.

    Fedosseev, V. N., Kudryavtsev, Y., Mishin, V. I.: Resonance laser ionization of atoms for nuclear physics. Physica Scripta 85(5), 058104 (2012). https://doi.org/10.1088/0031-8949/85/05/058104

    ADS  Article  Google Scholar 

  19. 19.

    Martinez Palenzuela, Y.: Characterization and optimization of a versatile laser and electron-impact ion source for radioactive ion beam production at ISOLDE and MEDICIS, Phd thesis, KU Leuven (2019)

  20. 20.

    Kirchner, R.: On the release and ionization efficiency of catcher-ion-source systems in isotope separation on-line. Nucl. Instrum. Methods Phys. Res. Section B: Beam Int. Mater. Atoms 70(1-4), 186–199 (1992). https://doi.org/10.1016/0168-583X(92)95930-P

    ADS  Article  Google Scholar 

  21. 21.

    Gadelshin, V., Barozier, V., Cocolios, T., Fedosseev, V., Formento-Cavaier, R., Haddad, F., Marsh, B., Marzari, S., Rothe, S., Stora, T., Studer, D., Weber, F., Wendt, K.: MELISSA: Laser ion source setup at CERN-MEDICIS facility. Blueprint. Nucl. Instrum. Methods Phys. Res. Section B: Beam Int. Mater. Atoms 463, 460–463 (2020). https://doi.org/10.1016/j.nimb.2019.04.024

    ADS  Article  Google Scholar 

  22. 22.

    Kron, T.: Pushing the limits of resonance ionization mass spectrometry. Ionization Efficiency in Palladium and Spectral Resolution in Technetium. Johannes Gutenberg-Universitȧt Mainz, Phd thesis (2016)

    Google Scholar 

  23. 23.

    Gadelshin, V., Heinke, R., Studer, D., Wendt, K.: Terbium laser resonance ionization scheme development (in preparation)

  24. 24.

    Ralchenko, J.Y., Kramida, A.E.: Reader, NIST Atomic Spectra Database (ver. 5.7.1). https://doi.org/10.18434/T4W30F. https://www.nist.gov/pml/atomic-spectra-database (2019)

  25. 25.

    Martin, W. C., Zalubas, R., Hagan, L.: Atomic energy levels, - the rare-earth elements, Tech. rep., National Bureau of Standards, Gaithersburg, MD. https://doi.org/10.6028/NBS.NSRDS.60 (1978)

  26. 26.

    Sonnenschein, V., Moore, I. D., Pohjalainen, I., Reponen, M., Rothe, S., Wendt, K.: Intracavity frequency doubling and difference frequency mixing for pulsed ns Ti:Sapphire laser systems at on-line radioactive ion beam facilities. In: Proceedings of the conference on advances in radioactive isotope science (ARIS2014), Journal of the physical society of Japan. https://doi.org/10.7566/JPSCP.6.030126 (2015)

  27. 27.

    Fedosseev, V., Huber, G., Köster, U., Lettry, J., Mishin, V., Ravn, H., Sebastian, V.: The ISOLDE laser ion source for exotic nuclei. Hyperfine Interact. 127(1-4), 409–416 (2000). https://doi.org/10.1023/A:1012609515865

    ADS  Article  Google Scholar 

  28. 28.

    Turek, M.: Surface ionization of radioactive nuclides - Numerical simulations. Acta Phys. Pol. A 123(5), 847–850 (2013). https://doi.org/10.12693/APhysPolA.123.847

    ADS  Article  Google Scholar 

  29. 29.

    Martinez Palenzuela, Y., Marsh, B., Ballof, J., Catherall, R., Chrysalidis, K., Cocolios, T., Crepieux, B., Day Goodacre, T., Fedosseev, V., Huyse, M., Larmonier, P., Ramos, J., Rothe, S., Smith, J., Stora, T., Van Duppen, P., Wilkins, S.: Enhancing the extraction of laser-ionized beams from an arc discharge ion source volume. Nucl. Instrum. Methods Phys. Res. Section B: Beam Int. Mater. Atoms 431, 59–66 (2018). https://doi.org/10.1016/j.nimb.2018.06.006

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Open Access funding provided by Projekt DEAL. We would like to acknowledge the help and assistance from the whole MEDICIS collaboration; from CERN-ISOLDE Technical and Physical groups. This research project has been supported by a Marie Skłodowska-Curie Innovative Training Network Fellowship of the European Commission’s Horizon 2020 Programme under contract number 642889 MEDICIS-PROMED; by the German Federal Ministry of Education and Research under the consecutive projects 05P12UMCIA and 05P15UMCIA; by the Research Foundation Flanders FWO (Belgium) and by a KU Leuven START grant.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Vadim Maratovich Gadelshin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of PLATAN 2019, 1st International Conference, Merger of the Poznan Meeting on Lasers and Trapping Devices in Atomic Nuclei Research and the International Conference on Laser Probing, Mainz, Germany 19-24 May 2019

Edited by Krassimira Marinova, Michael Block, Klaus D.A. Wendt and Magdalena Kowalska

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gadelshin, V.M., Wilkins, S., Fedosseev, V.N. et al. First laser ions at the CERN-MEDICIS facility. Hyperfine Interact 241, 55 (2020). https://doi.org/10.1007/s10751-020-01718-y

Download citation

Keywords

  • CERN MEDICIS
  • Isotope separation
  • Radioactive ion beam
  • Laser resonance ionization
  • Nuclear medicine
  • Theranostics
  • Terbium