Advertisement

Hyperfine Interactions

, 241:6 | Cite as

Magnetic property and 57Fe Mössbauer analysis of dilute Fe and Nb codoped SrTiO3-δ(STO) perovskites

  • Kiyoshi NomuraEmail author
  • Shuhei Yamakawa
  • Miki Kasari
  • Yuya Koike
  • Akio Nakanishi
  • Shiro Kubuki
  • Atsushi Okazawa
Article
  • 21 Downloads
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME2019), 1-6 September 2019, Dalian, China

Abstract

Dilute Fe and Nb codoped SrTiO3-δ (STO) perovskites were prepared by a complex formation and thermal decomposition method. The structure, magnetization properties and chemical states of Fe and Nb codoped STO perovskites were characterized by XRD, VSM and Mössbauer spectrometry. Mössbauer spectra of 57Fe and Nb codoped STO perovskites consist of paramagnetic doublet and magnetic relaxation components. The 1% Fe + 5% Nb codoped STO sample showed the smallest lattice constant and the largest ferromagnetism among 0.5–4% Fe + 5% Nb codoped STO perovskites. The most distortion of cubic STO lattice and the largest magnetic relaxation in Mössbauer spectrum were observed for the 0.5% Fe and 5% Nb codoped STO perovskite. It is considered that diluted magnetism in this system is related with the deformation of cubic structure due to defects.

Keywords

Diluted magnetism Perovskite oxide Fe and Nb doped SrTiO3 Mössbauer analysis 

Notes

References

  1. 1.
    Nomura, K.: Croat. Chem. Acta 88, 579–590 (2015)CrossRefGoogle Scholar
  2. 2.
    Prajapati, B., Kumar, S., Kumar, M., Chatterjee, S., Ghosh, A.K.: J. Mater. Chem. C 5, 4257–4267 (2017)CrossRefGoogle Scholar
  3. 3.
    Beltrán, J.J., Barrero, C.A., Punnoose, A.: J. Phys. Chem. C 118, 13203–13217 (2014)CrossRefGoogle Scholar
  4. 4.
    Kumar, A.S., Suresh, P., Kumar, M.M., Srikanth, H., Post, M.L., Sahner, K., Moos, R., Srinath, S.: J. Phys.: Conf. Ser. 200, 1–4 (2010)Google Scholar
  5. 5.
    Karaphun, A., Hunpratub, S., Swatsitang, E.: Microelectron. Eng. 126, 42–48 (2014)CrossRefGoogle Scholar
  6. 6.
    Şale, A.G., Kazan, S., Gatiiatova, J.I., Valeev, V.F., Khaibullin, R.I., Mikailzade, F.A.: Mater. Res. Bull. 48, 2861–2864 (2013)CrossRefGoogle Scholar
  7. 7.
    Karczewski, J., Riegel, B., Gazda, M., Jasinski, P., Kusz, B.: J. Electroceram. 24, 326–330 (2010)Google Scholar
  8. 8.
    Zhao, T., Lu, H., Chen, F., Dai, S., Yang, G., Che, Z.: J. Crys. Growth 212, 451–455 (2000)Google Scholar
  9. 9.
    Modak, B., Ghosh, S.K.: J. Phys. Chem. C 119, 23503–23514 (2015)CrossRefGoogle Scholar
  10. 10.
    Coey, J.M.D., Venkatesanan, M., Stamenov, P.: J. Phys. Cond. Matter. 28, 485001 (2016)Google Scholar
  11. 11.
    Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Nature Mater. 4, 173 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Radio Isotopes CenterTokyo Metropolitan UniversityTokyoJapan
  2. 2.Faculty of Science and EngineeringMeiji UniversityKawasakiJapan
  3. 3.Department of PhysicsShiga University of Medical ScienceShigaJapan
  4. 4.Graduate School of Arts and SciencesThe University of TokyoTokyoJapan

Personalised recommendations