Advertisement

Synthesis and Mössbauer study of anomalous magnetic behavior of Fe2O3 nanoparticle-montmorillonite nanocomposites

  • 18 Accesses

Abstract

In ensembles of single-domain magnetic nanoparticles, a magnetic-dipole interaction between particles takes place. The controlled assembly of bulk magnetically ordered materials from such nanoparticles opens up wide prospects for the creation of new magnetic materials. One of the classical methods for obtaining an ordered ensemble of nanoparticles is their synthesis in a matrix of clay minerals such as montmorillonite. The interlayer space of the mineral acts as a nanoreactor with specific conditions for the particle synthesis. Intercalating iron polycations into montmorillonite, one can obtain well-ordered ensembles of magnetic nanoparticles. Magnetic nanocomposites created in this way have new properties and exhibit non-standard magnetic behavior, which cannot always be described in terms of classical concepts. We used the capabilities of Mössbauer relaxation spectroscopy to study magnetic nanocomposites in order to study the structural and magnetic features of nanoparticles formed in aluminosilicate layers “from the inside”. An analysis of the Mössbauer spectra revealed that ordered ensembles of antiferromagnetic α-Fe2O3 nanoparticles formed between aluminosilicate layers of montmorillonite exhibited ferromagnetic behavior.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    Lu, A.H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46(8), 1222–1244 (2007)

  2. 2.

    Pankhurst, Q.A., et al.: Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 42(22), 224001 (2009)

  3. 3.

    Colombo, M., Carregal-Romero, S., Casula, M.F., Gutiérrez, L., Morales, M.P., Böhm, I.B., Heverhagen, J.T., Prosperi, D., Parak, W.J.: Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41(11), 4306–4334 (2012)

  4. 4.

    Mohammed, L., et al.: Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology. 30, 1–14 (2017)

  5. 5.

    Tang, S.C., Lo, I.M.: Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res. 47(8), 2613–2632 (2013)

  6. 6.

    Jones, N.: Materials science: the pull of stronger magnets. Nature News. 472(7341), 22–23 (2011)

  7. 7.

    Cowburn, R.P., Welland, M.E.: Room temperature magnetic quantum cellular automata. Science. 287(5457), 1466–1468 (2000)

  8. 8.

    Zeng, H., Li, J., Liu, J.P., Wang, Z.L., Sun, S.: Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature. 420, 395–398 (2002)

  9. 9.

    Brindley, G.W., et al.: Preparation and properties of some hydroxy-aluminium beidellites. Clay Miner. 12(3), 229–237 (1977)

  10. 10.

    Lahav N, et al. Cross-linked (1978) Smectites. I. Synthesis and properties of hydroxy-aluminum-montmorillonite. Clay Clay Miner. 26(2):107–15

  11. 11.

    Bergaya, F., et al.: Surface modification of clay minerals. Appl. Clay Sci. 1(19), 1–3 (2001)

  12. 12.

    Xi Y. et al. (2005) Modification of Wyoming montmorillonite surfaces using a cationic surfactant. Langmuir. Sep 13;21(19):8675-80

  13. 13.

    Ooka C, et al. (2003) Adsorptive and photocatalytic performance of TiO2 pillared montmorillonite in degradation of endocrine disruptors having different hydrophobicity. Applied Catalysis B: Environmental. 20;41(3):313-21

  14. 14.

    Tomul, F., et al.: Adsorption and catalytic properties of Fe/Cr-pillared bentonites. Chem. Eng. J. 185, 380–390 (2012)

  15. 15.

    Bineesh, K.V., et al.: Synthesis of metal-oxide pillared montmorillonite clay for the selective catalytic oxidation of H2S. Journal of Ind. Eng. Chem. 16(4), 593–597 (2010)

  16. 16.

    Rao, F., et al.: Synthesis and characterization of Ag-PILC through the formation of Ag@ montmorillonite nanocomposite. Nano. 10(02), 1550031 (2015)

  17. 17.

    Yuan, P., et al.: Synthesis and characterization of delaminated iron-pillared clay with meso–microporous structure. Microporous Mesoporous Mater. 88(1–3), 8–15 (2006)

  18. 18.

    Chen, L., et al.: Functional magnetic nanoparticle/clay mineral nanocomposites: preparation, magnetism and versatile applications. Applied Clay Science. 127, 143–163 (2016)

  19. 19.

    Son, Y.H., et al.: Structure−property correlation in iron oxide nanoparticle−clay hybrid materials. Chem. Mater. 22(7), 2226–2232 (2010)

  20. 20.

    Doff, D.H., et al.: Preparation and characterization of iron oxide pillared montmorillonite. Clay Miner. 23(4), 367–377 (1988)

  21. 21.

    Dousma, J., et al.: Hydrolysis—precipitation studies of iron solutions. II. Aging studies and the model for precipitation from Fe (III) nitrate solutions. J. Colloid Interface Sci. 64(1), 154–170 (1978)

  22. 22.

    Combes, J.M., et al.: Formation of ferric oxides from aqueous solutions: a polyhedral approach by X-ray absorption spectroscdpy: I. hydrolysis and formation of ferric gels. Geochim. Cosmochim. Acta. 53(3), 583–594 (1989)

  23. 23.

    Chuev, M.A.: Excitation spectrum and magnetic dynamics of antiferromagnetic nanoparticles in Mössbauer spectroscopy. JETP Lett. 99(5), 278–282 (2014)

  24. 24.

    Chuev M. A. (2017) Excitation spectrum of the Néel ensemble of antiferromagnetic nanoparticles as revealed in Mössbauer spectroscopy. Advances in Condensed Matter Physics, V.2017, ID 6209206

  25. 25.

    Chuev, M.A.: Novel models of magnetic dynamics for characterization of nanoparticles biodegradation in a body from Mössbauer and magnetization measurements. J. Magn. Magn. Mater. 470, 12–17 (2019)

  26. 26.

    Amin, N., et al.: Morin temperature of annealed submicronic α-F2O3 particles. Phys. Rev. B. 35(10), 4810 (1987)

  27. 27.

    Jacob, J., et al.: VSM and Mössbauer study of nanostructured hematite. J. Magn. Magn. Mater. 322(6), 614–621 (2010)

  28. 28.

    Chuev, M.A., et al.: Novel insight into the effect of disappearance of the Morin transition in hematite nanoparticles. JETP Lett. 105(11), 700–705 (2017)

  29. 29.

    Sun, K., et al.: The Mössbauer study of α-Fe2O3 fine particles with and without adsorbed cobalt. Phys. Status Solidi A. 115(2), 539–546 (1989)

  30. 30.

    Davar, F., et al.: Single-phase hematite nanoparticles: non-alkoxide sol–gel based preparation, modification and characterization. Ceram. Int. 42(16), 19336–19342 (2016)

  31. 31.

    Dai, Y.D., et al.: Thermal decomposition of iron oxychloride as studied by thermal analysis, X-ray diffraction and Mössbauer spectroscopy. Mater. Chem. Phys. 79(1), 94–97 (2003)

  32. 32.

    Singh, L.H., et al.: Atomic scale study of thermal reduction of nano goethite coexisting with magnetite. AIP Adv. 3(2), 022101 (2013)

Download references

Author information

Correspondence to Raul Gabbasov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME2019), 1-6 September 2019, Dalian, China

Edited by Tao Zhang, Junhu Wang and Xiaodong Wang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gabbasov, R., Yurenya, A., Cherepanov, V. et al. Synthesis and Mössbauer study of anomalous magnetic behavior of Fe2O3 nanoparticle-montmorillonite nanocomposites. Hyperfine Interact 241, 9 (2020) doi:10.1007/s10751-019-1677-5

Download citation

Keywords

  • Mössbauer spectroscopy
  • Magnetic nanoparticles
  • Intercalation
  • Montmorillonite
  • Antiferromagnetic nanoparticles