Mössbauer spectroscopy study of Y-type Hexaferrite (Ba2Co2Fe12O22) prepared by the co-precipitation method

  • 13 Accesses


In this work we report the results of structural and Mössbauer spectroscopy studies for Ba2Co2Fe12O22 samples prepared by coprecipitation following two different synthesis routes: route A (pH = 10, NaOH + Na2CO3 added dropwise), and route B (pH = 14, NaOH + Na2CO3 added one shot). The resulting powders were sintered for 4 h at different temperatures (700 °C to 1100 °C in steps of 100 °C). The sintered powders were characterized by x-ray diffraction (XRD) and room temperature Mössbauer spectroscopy. XRD and Mössbauer results of the sample prepared by route A and sintered at 700 °C revealed formation of spinel phases (CoFe2O4 and/or Fe3O4), BaCO3 and BaM-type phase. The Co2Y phase developed in the samples sintered at 800 °C and 900 °C with spinel species as impurities, and single (pure) Co2Y phase was obtained at higher temperatures. On contrast, XRD patterns and the Mössbauer spectra for the samples prepared by route B showed different results, where the sample sintered at 700 °C consisted of only spinel phases. The Co2Y phase developed at higher temperatures, coexisting with significant amounts of other phases.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    Smit, J., Wijn, H.P.J.: Ferrites. Wiley, New York (1959)

  2. 2.

    Chikazumi, S.: Physics of Ferromagnetism 2e, 2nd edn. Oxford University Press, Oxford (2009)

  3. 3.

    Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)

  4. 4.

    Harris, V.G., Geiler, A., Chen, Y., Yoon, S.D., Wu, M., Yang, A., Chen, Z., He, P., Parimi, P.V., Zuo, X.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009)

  5. 5.

    Özgür, Ü., Alivov, Y., Morkoç, H.: Microwave ferrites, part 1: fundamental properties. J. Mater. Sci. Mater. Electron. 20, 789–834 (2009)

  6. 6.

    Mahmood, S.H.: Permanent magnet applications. In: Mahmood, S.H., Abu-Aljarayesh, I. (eds.) Hexaferrite Permanent Magnetic Materials, pp. 153–165. Materials Research Forum LLC, Millersville (2016)

  7. 7.

    Nicolas, J.: Microwave ferrites. In: Wohlfarth, E.P. (ed.) Ferromagnetic Materials, pp. 243–296. North-Holland Publishing Company, New York (1980)

  8. 8.

    Topal, U., Bakan, H.I.: Permanently magnetic BaFe12O19 foams: synthesis and characterization. Mater. Chem. Phys. 123, 121–124 (2010)

  9. 9.

    Hongya, Y., Zhengyi, L., Dechang, Z.: Microstructure of pre-sintered permanent magnetic strontium ferrite powder. Rare Metals. 25, 572–577 (2006)

  10. 10.

    Kubo, O., Ido, T., Yokoyama, H.: Properties of Ba ferrite particles for perpendicular magnetic recording media. IEEE Trans. Magn. 18, 1122–1124 (1982)

  11. 11.

    Speliotis, D.: Barium ferrite magnetic recording media. IEEE Trans. Magn. 23, 25–28 (1987)

  12. 12.

    Taniguchi, K., Abe, N., Ohtani, S., Umetsu, H., Arima, T.-h.: Ferroelectric polarization reversal by a magnetic field in multiferroic Y-type hexaferrite Ba2Mg2Fe12O22. Appl. Phys. Express. 1, 031301 (2008)

  13. 13.

    Lee, H.B., Chun, S.H., Shin, K.W., Jeon, B.-G., Chai, Y.S., Kim, K.H., Schefer, J., Chang, H., Yun, S.-N., Joung, T.-Y.: Heliconical magnetic order and field-induced multiferroicity of the Co2Y-type hexaferrite Ba0.3Sr1.7Co2Fe12O22. Phys. Rev. B. 86, 094435 (2012)

  14. 14.

    Tokura, Y., Seki, S.: Multiferroics with spiral spin orders. Adv. Mater. 22, 1554–1565 (2010)

  15. 15.

    Tabatabaie, F., Fathi, M., Saatchi, A., Ghasemi, A.: Effect of Mn–co and co–Ti substituted ions on doped strontium ferrites microwave absorption. J. Alloys Compd. 474, 206–209 (2009)

  16. 16.

    Sharma, S., Daya, K., Sharma, S., Batoo, K.M., Singh, M.: Sol–gel auto combustion processed soft Z-type hexa nanoferrites for microwave antenna miniaturization. Ceram. Int. 41, 7109–7114 (2015)

  17. 17.

    Geiler, A., Daigle, A., Wang, J., Chen, Y., Vittoria, C., Harris, V.: Consequences of magnetic anisotropy in realizing practical microwave hexaferrite devices. J. Magn. Magn. Mater. 324, 3393–3397 (2012)

  18. 18.

    Mahmood, S.H.: Ferrites with high magnetic parameters. In: Mahmood, S.H., Abu-Aljarayesh, I. (eds.) Hexaferrite Permanent Magnetic Materials, pp. 111–152. Materials Research Forum LLC, Millersville (2016)

  19. 19.

    Mahmood, S.H., Bsoul, I.: Tuning the magnetic properties of M-type hexaferrites. In: Jotania, R.B., Mahmood, S.H. (eds.) Magnetic Oxides and Composites, pp. 49–100. Materials Research Forum LLC, Millersville (2018)

  20. 20.

    Topal, U.: A simple synthesis route for high quality BaFe12O19 magnets. Mater. Sci. Eng. B. 176, 1531–1536 (2011)

  21. 21.

    Topal, U.: Towards further improvements of the magnetization parameters of B2O3-doped BaFe12O19 particles: etching with hydrochloric acid. J. Supercond. Nov. Magn. 25, 1485–1488 (2012)

  22. 22.

    Sözeri, H., Durmuş, Z., Baykal, A., Uysal, E.: Preparation of high quality, single domain BaFe12O19 particles by the citrate sol–gel combustion route with an initial Fe/Ba molar ratio of 4. Mater. Sci. Eng. B. 177, 949–955 (2012)

  23. 23.

    Han, M., Ou, Y., Chen, W., Deng, L.: Magnetic properties of Ba-M-type hexagonal ferrites prepared by the sol–gel method with and without polyethylene glycol added. J. Alloys Compd. 474, 185–189 (2009)

  24. 24.

    Dursun, S., Topkaya, R., Akdoğan, N., Alkoy, S.: Comparison of the structural and magnetic properties of submicron barium hexaferrite powders prepared by molten salt and solid state calcination routes. Ceram. Int. 38, 3801–3806 (2012)

  25. 25.

    Kim, D.-H., Lee, Y.-K., Kim, K.-M., Kim, K.-N., Choi, S.-Y., Shim, I.-B.: Synthesis of Ba-ferrite microspheres doped with Sr for thermoseeds in hyperthermia. J. Mater. Sci. 39, 6847–6850 (2004)

  26. 26.

    Pullar, R., Bhattacharya, A.: The magnetic properties of aligned M hexa-ferrite fibres. J. Magn. Magn. Mater. 300, 490–499 (2006)

  27. 27.

    Alsmadi, A., Bsoul, I., Mahmood, S., Alnawashi, G., Al-Dweri, F., Maswadeh, Y., Welp, U.: Magnetic study of M-type Ru-Ti doped strontium hexaferrite nanocrystalline particles. J. Alloys Compd. 648, 419–427 (2015)

  28. 28.

    Palomino, R., Miró, A.B., Tenorio, F., De Jesús, F.S., Escobedo, C.C., Ammar, S.: Sonochemical assisted synthesis of SrFe12O19 nanoparticles. Ultrason. Sonochem. 29, 470–475 (2016)

  29. 29.

    Singhal, S., Namgyal, T., Singh, J., Chandra, K., Bansal, S.: A comparative study on the magnetic properties of MFe12O19 and MAlFe11O19 (M= Sr, Ba and Pb) hexaferrites with different morphologies. Ceram. Int. 37, 1833–1837 (2011)

  30. 30.

    Guerrero-Serrano, A., Pérez-Juache, T., Mirabal-García, M., Matutes-Aquino, J., Palomares-Sánchez, S.: Effect of barium on the properties of lead hexaferrite. J. Supercond. Nov. Magn. 24, 2307–2312 (2011)

  31. 31.

    Mahmood, S.H., Zaqsaw, M.D., Mohsen, O.E., Awadallah, A., Bsoul, I., Awawdeh, M., Mohaidat, Q.I.: Modification of the magnetic properties of Co2Y hexaferrites by divalent and trivalent metal substitutions. Solid State Phenom. 241, 93–125 (2016)

  32. 32.

    Ali, I., Islam, M., Awan, M., Ahmad, M.: Effects of Ga–Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol–gel auto-combustion route. J. Alloys Compd. 547, 118–125 (2013)

  33. 33.

    Awawdeh, M., Al-Bashaireh, R., Lehlooh, A., Mahmood, S.: Structural and Mossbauer studies of ball milled Co-Zn Y-type hexaferrites. Jordan J. Phys. 7, 85–98 (2014)

  34. 34.

    Dahal, J., Wang, L., Mishra, S., Nguyen, V., Liu, J.: Synthesis and magnetic properties of SrFe12−xyAlxCoyO19 nanocomposites prepared via autocombustion technique. J. Alloys Compd. 595, 213–220 (2014)

  35. 35.

    Kazin, P., Trusov, L., Zaitsev, D., Tretyakov, Y.D., Jansen, M.: Formation of submicron-sized SrFe12− xAlxO19 with very high coercivity. J. Magn. Magn. Mater. 320, 1068–1072 (2008)

  36. 36.

    Mahmood, S.H., Jaradat, F.S., Lehlooh, A.F., Hammoudeh, A.: Structural properties and hyperfine interactions in co-Zn Y-type hexaferrites prepared by sol-gel method. Ceram. Int. 40, 5231–5236 (2014)

  37. 37.

    Albanese, G., Deriu, A.: Magnetic properties of Al, Ga, Sc, In substituted barium ferrites: a comparative analysis. Ceram. Int. 5, 3–10 (1979)

  38. 38.

    Mazumdar, S.C., Hossain, A.A.: Synthesis and magnetic properties of Ba2Ni2–xZnxFe12O22. World J. Condens. Matter. Phys. 2, 181–187 (2012)

  39. 39.

    Bai, Y., Zhou, J., Gui, Z., Li, L.: Magnetic properties of Cu, Zn-modified Co2Y hexaferrites. J. Magn. Magn. Mater. 246, 140–144 (2002)

  40. 40.

    Albanese, G.: Recent advances in hexagonal ferrites by the use of nuclear spectroscopic methods. Le Journal de Physique Colloques. 38, 85–94 (1977)

  41. 41.

    Khanduri, H., Dimri, M.C., Kooskora, H., Heinmaa, I., Viola, G., Ning, H., Reece, M., Krustok, J., Stern, R.: Structural, dielectric, magnetic, and nuclear magnetic resonance studies of multiferroic Y-type hexaferrites. J. Appl. Phys. 112, 073903 (2012)

  42. 42.

    Sagayama, H., Taniguchi, K., Abe, N., Arima, T.-h., Nishikawa, Y., Yano, S.-i., Kousaka, Y., Akimitsu, J., Matsuura, M., Hirota, K.: Two distinct ferroelectric phases in the multiferroic Y-type hexaferrite Ba2Mg2Fe12O22. Phys. Rev. B. 80, 180419 (2009)

  43. 43.

    Bai, Y., Zhou, J., Gui, Z., Yue, Z., Li, L.: Preparation and magnetic characterization of Y-type hexaferrites containing zinc, cobalt and copper. Mater. Sci. Eng. B. 99, 266–269 (2003)

  44. 44.

    Collins, E.D, Voit, S.L, and Vedder, R.J.: Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials. United States: N. p., 2011.

  45. 45.

    Hsiang, H.-I., Yao, R.-Q.: Hexagonal ferrite powder synthesis using chemical coprecipitation. Mater. Chem. Phys. 104, 1–4 (2007)

  46. 46.

    Aneesh Kumar, K.S., Bhowmik, R.N., Mahmood, S.H.: Role of pH value durinh chemical reaction, and site occupancy of Ni2+ and Fe3+ ions in spinel structure for tuning room temperature magnetic properties in Ni1.5Fe1.5O4 ferrite. J. Magn. Magn. Mater. 406, 60–71 (2016)

  47. 47.

    Warren, B.E.: X-Ray Diffraction. Addison-Wesley, Reading (1969)

  48. 48.

    Evans, B., Grandjean, F., Lilot, A., Vogel, R., Gerard, A.: 57Fe hyperfine interaction parameters and selected magnetic properties of high purity MFe12O19 (M= Sr, Ba). J. Magn. Magn. Mater. 67, 123–129 (1987)

  49. 49.

    Awadallah, A., Mahmood, S.H., Maswadeh, Y., Bsoul, I., Awawdeh, M., Mohaidat, Q.I., Juwhari, H.: Structural, magnetic, and Mossbauer spectroscopy of cu substituted M-type hexaferrites. Mater. Res. Bull. 74, 192–201 (2016)

  50. 50.

    Daigle, A., DuPre, E., Geiler, A., Chen, Y., Parimi, P.V., Vittoria, C., Harris, V.G.: Preparation and characterization of pure-phase Co2Y ferrite powders via a scalable aqueous Coprecipitation method. J. Am. Ceram. Soc. 93, 2994–2997 (2010)

  51. 51.

    Lisjak, D., Drofenik, M.: The low-temperature formation of barium hexaferrites. J. Eur. Ceram. Soc. 26, 3681–3686 (2006)

  52. 52.

    Aphesteguy, J.C., Jacobo, S.E., Schegoleva, N., Kurlyandskaya, G.: Characterization of nanosized spinel ferrite powders synthesized by coprecipitation and autocombustion method. J. Alloys Compd. 495, 509–512 (2010)

  53. 53.

    D. Kovacheva, T. Ruskov, P. Krystev, S. Asenov, N. Tanev, I. Mönch, R. Koseva, U. Wolff, T. Gemming, M. Markova-Velichkova, Synthesis and characterization of magnetic nano-sized Fe3O4 and CoFe2O4, Bulgarian Chemical Communications Proceedings of the III rd National Crystallographic Symposium, 2012, pp. 90–97

  54. 54.

    Mukasyan, A., Dinka, P.: Novel approaches to solution-combustion synthesis of nanomaterials. Int. J. Self-Propag. High-Temp. Synth. 16, 23–35 (2007)

Download references


The authers acknowledge the contribution of Prof. I. Bsoul at Al al-Bayt University in the Rietveld refinement analysis. The Financial support of the Deanship of Scientific Research and Graduate Studies at Yarmouk University is acknowledged. A-F. Lehlooh appreciates the full support of Yarmouk University to attend ICAME 2019 in Dalian.

Author information

Correspondence to Abdel-Fatah Lehlooh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME2019), 1-6 September 2019, Dalian, China

Edited by Tao Zhang, Junhu Wang and Xiaodong Wang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lehlooh, A., Alghazo, R., Rawwagah, F. et al. Mössbauer spectroscopy study of Y-type Hexaferrite (Ba2Co2Fe12O22) prepared by the co-precipitation method. Hyperfine Interact 241, 12 (2020).

Download citation


  • Ba2Co2Fe12O22
  • Y-type hexaferrite
  • X-ray diffraction
  • Coprecipitation
  • Mössbauer spectroscopy
  • Sintering