Advertisement

Hyperfine Interactions

, 241:12 | Cite as

Light-induced spin transition in the spin-crossover complex FePt2 detected by optical pump -coherent resonant nuclear elastic scattering

  • Sakshath SadashivaiahEmail author
  • Kevin Jenni
  • Lena Scherthan
  • Bernhard Schäfer
  • Marcus Herlitschke
  • Peter Würtz
  • Cornelius Strohm
  • Ilya Sergeev
  • Hans-Christian Wille
  • Ralf Röhlsberger
  • Juliusz Adam Wolny
  • Mario Ruben
  • Volker Schünemann
Article
  • 30 Downloads
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME2019), 1-6 September 2019, Dalian, China

Abstract

We report the results of optical pump-nuclear resonance probe experiments on the SCO complex [FeII(L-PtII(t-but-tpy))2](BF4)2 with L being 2,6-di(pyrazol-1-yl)-4-(trimethylsilylethynyl)pyridine) and t-but-tpy being 4,4′,4″-Tri-tert-Butyl-2,2′:6′,2″-terpyridine using a novel experimental set-up at the beamline P01, Petra III, DESY Hamburg. We investigate the changes in the spin state of the complex when it is excited by laser pulses of 766 nm wavelength and pulse width < 100 ps. Our simulations of the nuclear forward scattering data indicate a dominant low spin state along with some high spin fraction in the absence of laser pulses. We observe clear changes in the time-spectrum following the instant at which the laser pulse hits the sample. Furthermore, these alterations are recorded as the relative timing of the laser pulses with respect to the synchrotron pulses is varied.

Keywords

Nuclear forward scattering NRS pump-probe experiments Spin crossover 

Notes

Acknowledgements

This work has been supported by the German Ministry of Research (BMBF) under 05K16UKA and by the German Science foundation (DFG) via SFB/TRR 88 3MET and SFB/TRR 173 Spin+X.

References

  1. 1.
    Senthil Kumar, K., Ruben, M.: Emerging trends in spin crossover (SCO) based functional materials and devices. Coord. Chem. Rev. 346, 176–205 (2017).  https://doi.org/10.1016/j.ccr.2017.03.024 CrossRefGoogle Scholar
  2. 2.
    Molnár, G., Rat, S., Salmon, L., Nicolazzi, W., Bousseksou, A.: Spin crossover Nanomaterials: from fundamental concepts to devices. Adv. Mater. 30, 1–23 (2018).  https://doi.org/10.1002/adma.201703862 CrossRefGoogle Scholar
  3. 3.
    Wolf, M.M.N., Gross, R., Schumann, C., Wolny, J.A., Schuenemann, V., Dossing, A., Paulsen, H., McGarvey, J.J., Diller, R.: Sub-picosecond time resolved infrared spectroscopy of high-spin state formation in Fe(II) spin crossover complexesw. Phys. Chem. Chem. Phys. 10, 4264–4273 (2008).  https://doi.org/10.1039/b802607f CrossRefGoogle Scholar
  4. 4.
    Bertoni, R., Lorenc, M., Cailleau, H., Tissot, A., Laisney, J., Boillot, M.-L., Stoleriu, L., Stancu, A., Enachescu, C., Collet, E.: Elastically driven cooperative response of a molecular material impacted by a laser pulse. Nat. Mater. 15, 606–610 (2016).  https://doi.org/10.1038/nmat4606 ADSCrossRefGoogle Scholar
  5. 5.
    Enachescu, C., Hauser, A., Girerd, J.-J., Boillot, M.-L.: Photoexcitation and relaxation dynamics of Catecholato–Iron(III) spin-crossover complexes. ChemPhysChem. 7, 1127–1135 (2006).  https://doi.org/10.1002/cphc.200500671 CrossRefGoogle Scholar
  6. 6.
    Wolny, J.A., Diller, R., Schünemann, V.: Vibrational spectroscopy of mono- and polynuclear spin-crossover systems. Eur. J. Inorg. Chem. 2635–2648 (2012).  https://doi.org/10.1002/ejic.201200059 CrossRefGoogle Scholar
  7. 7.
    Anastassakis, E.: Selection rules of Raman scattering by optical phonons in strained cubic crystals. J. Appl. Phys. 82, 1582–1591 (1997).  https://doi.org/10.1063/1.365958 ADSCrossRefGoogle Scholar
  8. 8.
    Röhlsberger, R.: Nuclear condensed matter physics with synchrotron radiation: basic principles, methodology and applications. in: nuclear condensed matter physics with synchrotron radiation: basic principles, methodology and applications. pp. 1–6. Springer-Verlag Berlin, Heidelberger Platz 3, D-14197 Berlin, Germany (2004)Google Scholar
  9. 9.
    Schäfer, B., Bauer, T., Faus, I., Wolny, J.A., Dahms, F., Fuhr, O., Lebedkin, S., Wille, H.C., Schlage, K., Chevalier, K., Rupp, F., Diller, R., Schünemann, V., Kappes, M.M., Ruben, M.: A luminescent Pt 2 Fe spin crossover complex. Dalton Trans. 46, 2289–2302 (2017).  https://doi.org/10.1039/c6dt04360g CrossRefGoogle Scholar
  10. 10.
    Bauer, T., Omlor, A., Auerbach, H., Jenni, K., Schäfer, B., Diller, R., Ruben, M., Schünemann, V.: Characterization of the light induced excited spin state of a heterometallic FePt2 complex by high-field Mössbauer spectroscopy. Hyperfine Interact. 238, 98–96 (2017).  https://doi.org/10.1007/s10751-017-1464-0 ADSCrossRefGoogle Scholar
  11. 11.
    Sakshath, S., Jenni, K., Scherthan, L., Würtz, P., Herlitschke, M., Sergeev, I., Strohm, C., Wille, H.C., Röhlsberger, R., Wolny, J.A., Schünemann, V.: Optical pump - nuclear resonance probe experiments on spin crossover complexes. Hyperfine Interact. 238, 1–7 (2017).  https://doi.org/10.1007/s10751-017-1461-3 CrossRefGoogle Scholar
  12. 12.
    Sturhahn, W.: CONUSS and PHOENIX: evaluation of nuclear resonant scattering data. Hyperfine Interact. 125, 149–172 (2000).  https://doi.org/10.1023/A:1012681503686 CrossRefGoogle Scholar
  13. 13.
    Hauser, A.: Excited-state lifetimes of [ Fe ( bipy ) 3 ] 2 + and [ Fe ( phen ). Chem. Phys. Lett. 173, 507–512 (1990)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sakshath Sadashivaiah
    • 1
    Email author
  • Kevin Jenni
    • 1
  • Lena Scherthan
    • 1
  • Bernhard Schäfer
    • 2
  • Marcus Herlitschke
    • 3
  • Peter Würtz
    • 1
  • Cornelius Strohm
    • 3
  • Ilya Sergeev
    • 3
  • Hans-Christian Wille
    • 3
  • Ralf Röhlsberger
    • 3
  • Juliusz Adam Wolny
    • 1
  • Mario Ruben
    • 2
    • 4
  • Volker Schünemann
    • 1
  1. 1.Fachbereich PhysikTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT)Eggenstein-LeopoldshafenGermany
  3. 3.Deutsches Elektronen-SynchrotronHamburgGermany
  4. 4.Insitut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)CNRS- Université de StrasbourgStrasbourg cedex 2France

Personalised recommendations