Advertisement

Hyperfine Interactions

, 240:120 | Cite as

Synchrotron-radiation-based Mössbauer absorption spectroscopy with high resonant energy nuclides

  • Ryo MasudaEmail author
  • Kohei Kusada
  • Takefumi Yoshida
  • Shinji Michimura
  • Yasuhiro Kobayashi
  • Shinji Kitao
  • Hiroyuki Tajima
  • Takaya Mitsui
  • Hirokazu Kobayashi
  • Hiroshi Kitagawa
  • Makoto Seto
Article
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME2019), 1-6 September 2019, Dalian, China

Abstract

We successfully observed the synchrotron-radiation-based Mössbauer absorption spectra with 158Gd and 99Ru. Their nuclear resonant energies were 79.5 keV and 89.6 keV, respectively, and they are factually the highest energy which energy region synchrotron radiation covers with sufficient intensity as the incident X-rays for Mössbauer spectroscopy. Although the low recoilless fraction owing to these high resonant energy, Mössbauer energy spectra of GdPd3 to 158Gd2O3 and fcc-Ru nanoparticles to bulk hcp-99Ru metal were obtained with natural samples of the former compounds with sufficient amount, because of the high transparency of these high energy X-rays(to electronic scattering). In spite of large statistical errors, we can evaluate the hyperfine parameters when the spectrum includes simple 1-site profile. 99Ru and 158Gd SR-based Mössbauer absorption spectra of various complex materials including somewhat complex structures will be available with the improvements to the measurement system; More detector elements for larger solid angle subtended to the scatterer sample will yields more counting rates and improvement higher recoilless fraction by arranging more appropriate chemical specimen as the scatterer yields deeper absorption profile.

Keywords

Synchrotron-radiation-based Mössbauer absorption spectroscopy 99Ru 158Gd Nuclear resonant scattering 

Notes

Acknowledgements

The authors would like to thank the Accelerator Group of SPring-8 for their support, especially with the operation of several electron bunch-modes and the top-up injection operation. This work was supported by National Institutes for Quantum and Radiological Science and Technology (QST) through the QST Advanced Characterization Nanotechnology Platform under the remit of “Nanotechnology Platform” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (Proposal Nos. A-17-QS-0017, A-18-QS-0001, A-18-QS-0021 and A-19-QS-0001). The synchrotron radiation experiments were performed using a QST experimental station at QST beamline BL11XU,SPring-8, with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2017B3581, 2018A3581, 2018B3581, and 2019A3581).

References

  1. 1.
    Gütlich, P., Bill, E., Trautwein, A.X.: Mössbauer Spectroscopy and Transition Metal Chemistry. Springer, Berlin (2011)CrossRefGoogle Scholar
  2. 2.
    Website of the Mössbauer Effect Data Center. http://www.medc.dicp.ac.cn/Resources.php (2019). Accessed 21 August 2019
  3. 3.
    Ruby, S.L.: Mössbauer experiments without conventional sources. J. Phys. (Paris), Colloq. 35, C6–209–C6–211 (1974)CrossRefGoogle Scholar
  4. 4.
    Cohen, R.L., Miller, G.L., West, K.W.: Nuclear resonance excitation by synchrotron radiation. Phys. Rev. Lett. 41, 381–384 (1978)ADSCrossRefGoogle Scholar
  5. 5.
    Gerdau, E., Rüffer, R., Winkler, H., Tolksdorf, W., Klages, C.P., Hannon, J.P.: Nuclear Bragg diffraction of synchrotron radiation in yttrium iron garnet. Phys. Rev. Lett. 54, 835–838 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    Hastings, J.B., Siddons, D.P., van Bürck, U., Hollatz, R., Bergmann, U.: Mössbauer spectroscopy using synchrotron radiation. Phys. Rev. Lett. 66, 770–773 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    Wille, H.-C., Shvyd’ko, Y.V., Alp, E.E., Rüter, H.D., Leupold, O., Sergueev, I., Rüffer, R., Barla, A., Sanchez, J.P.: Nuclear resonant forward scattering of synchrotron radiation from 121Sb at 37.13 keV. Europhys.Lett. 74, 170–176 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Imai, Y., Yoda, Y., Kitao, S., Masuda, R., Higashitaniguchi, S., Inaba, C., Seto, M.: High-energy-resolution monochromator for nuclear resonant scattering of synchrotron radiation by Te-125 at 35.49 keV. Proc. SPIE. 6705, 670512 (2007)CrossRefGoogle Scholar
  9. 9.
    Sergueev, I., Wille, H.-C., Hermann, R.P., Bessas, D., Shvyd’ko, Y.V., Zając, M., Rüffer, R.: Milli-electronvolt monochromatization of hard X-rays with a sapphire backscattering monochoromator. J. Synchrotron Radiat. 18, 802–810 (2011)CrossRefGoogle Scholar
  10. 10.
    Sergueev, I., Chumakov, A.I., Deschaux, T.H., Rüffer, R., Strohm, C., van Bürck, U.: Nuclear forward scattering for high energy Mössbauer transitions. Phys. Rev. Lett. 99, 097601 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Sergueev, I., Dubrovinsky, L., Ekholm, M., Vekilova, O.Y., Chumakov, A.I., Zajac, M., Potapkin, V., Kantor, I., Bornemann, S., Ebert, H., Simak, S.I., Abrikosov, I.A., Rüffer, R.: Hyperfine splitting and room temperature ferromagnetism of Ni at multimegabar pressure. Phys. Rev. Lett. 111, 157601 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Sobelev, A.V., Glazkova, I.S., Akulenko, A.A., Sergueev, I., Chumakov, A.I., Yi, W., Belik, A.A., Presniakov, I.A.: 61Ni nuclear forward scattering study of magnetic hyperfine interactions in double perovskite A2NiMnO6 (A=Sc, In, Tl). J. Phys. Chem. C. 23628–23634 (2019)Google Scholar
  13. 13.
    Bessas, D., Merkel, D.G., Chumakov, A.I., Rüffer, R., Hermann, R.P., Sergueev, I., Mahmoud, A., Klobes, B., McGuire, M.A., Sougrati, M.T., Stievano, L.: Nuclear forward scattering of synchrotron radiation by 99Ru. Phys. Rev. Lett. 113, 147601 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Alexeev, P., Leupold, O., Sergueev, I., Herlitschke, M., McMorrow, D.F., Perry, R.S., Hunter, E.C., Röhlsberger, R., Wille, H.-C.: Nuclear resonant scattering from 193Ir as a probe of the electronic and magnetic properties of iridates. Sci. Rep. 9, 5097 (2019)ADSCrossRefGoogle Scholar
  15. 15.
    Seto, M., Masuda, R., Higashitaniguchi, S., Kitao, S., Kobayashi, Y., Inaba, C., Mitsui, T., Yoda, Y.: Synchrotron-radiation-based Mössbauer spectroscopy. Phys. Rev. Lett. 102, 217602 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Masuda, R., Kobayashi, Y., Kitao, S., Kurokuzu, M., Saito, M., Yoda, Y., Mitsui, T., Hosoi, K., Kobayashi, H., Kitagawa, H., Seto, M.: 61Ni synchrotron radiation-based Mössbauer spectroscopy of nickel-based nanoparticles with hexagonal structure. Sci. Rep. 6, 20861 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Segi, T., Masuda, R., Kobayashi, Y., Tsubota, T., Yoda, Y., Seto, M.: Synchrotron radiation-based 61Ni Mössbauer spectroscopic study of Li(Ni1/3Mn1/3Co1/3)O2 cathode materials of lithium ion rechargeable battery. Hyperfine Interact. 237(7), (2016)Google Scholar
  18. 18.
    Gee, L.B., Lin, C.-Y., Jenney Jr., F.E., Adams, M.W.W., Yoda, Y., Masuda, R., Saito, M., Kobayashi, Y., Tamasaku, K., Lerche, M., Seto, M., Riordan, C.G., Ploskonka, A., Power, P.P., Cramer, S.P., Lauterbach, L.: Synchrotron-based nickel Mössbauer spectroscopy. Inorg. Chem. 55, 6866–6872 (2016)CrossRefGoogle Scholar
  19. 19.
    Masuda, R., Kobayashi, H., Aoyama, Y., Saito, M., Kitao, S., Ishibashi, H., Hosokawa, S., Mitsui, T., Yoda, Y., Kitagawa, H., Seto, M.: 61Ni synchrotron-radiation-based Mössbauer absorption spectroscopy of Ni nanoparticle composites. Hyperfine Interact. 239(11), (2018)Google Scholar
  20. 20.
    Masuda, R., Kobayashi, Y., Kitao, S., Kurokuzu, M., Saito, M., Yoda, Y., Mitsui, T., Iga, F., Seto, M.: Synchrotron radiation-based Mössbauer spectra of 174Yb measured with internal conversion electrons. Appl. Phys. Lett. 104, 082411 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Oura, M., Ikeda, S., Masuda, R., Kobayashi, Y., Seto, M., Yoda, Y., Hirao, N., Kawaguchi, S., Ohishi, Y., Suzuki, S., Kuga, K., Nakatsuji, S., Kobayashi, H.: Valence fluctuating compound α-YbAlB4 studied by 174Yb Mössbauer spectroscopy and X-ray diffraction using synchrotron radiation. Physica B. 536, 162–164 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Love, J.C., Obenshain, F.E., Czjzek, G.: Mössbauer spectroscopy with 61Ni in nickel-transition-metal alloys and nickel compounds. Phys. Rev. B. 3, 2827–2840 (1971)ADSCrossRefGoogle Scholar
  23. 23.
    Kishimoto, S.: An avalanche photodiode detector for X-ray timing measurements. Nucl. Instrum. Meth. Phys. Res. A. 309, 603–605ADSCrossRefGoogle Scholar
  24. 24.
    Kishimoto, S., Yoda, Y., Seto, M., Kitao, S., Kobayashi, Y., Haruki, R., Harami, T.: Array of avalanche photodiodes as a position-sensitive X-ray detector. Nucl. Instrum. Meth. Phys. Res. A. 513, 193–196 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    Kishimoto, S., Yoda, Y., Seto, M., Kobayashi, Y., Kitao, S., Haruki, R., Kawauchi, T., Fukutani, K., Okano, T.: Observation of nuclear excitation by electron transition in 197Au with synchrotron X rays and an avalanche photodiode. Phys. Rev. Lett. 85, 1832–1834 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Czjzek, G.: Mössbauer spectroscopy of new materials containing gadolinium. Mössbauer spectroscopy applied to magnetism and materials science, vol. 1, Chap. 9, 373–429. Plenum press, New York (1993)Google Scholar
  27. 27.
    Helmer, R.G.: Nuclear data sheets for A=158. Nuclear Data Sheets. 101, 325–519 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Pandey, A., Mazumdar, C., Ranganathan, R., Johnston, D.C.: Multiple crossovers between positive and negative magnetoresistance versus field due to fragile spin structure in metallic GdPd3. Sci. Rep. 7, 42789 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Fink, J., Kienle, P.: Recoilless γ emission in 156Gd and 158Gd following neutron capture reaction. Phys. Lett. 17, 326–327 (1965)ADSCrossRefGoogle Scholar
  30. 30.
    Fink, J.: Mössbauereffektmessungen am 79,5 keV-Niveau von Gd158. Z. Phys. 207, 225–234 (1967)ADSCrossRefGoogle Scholar
  31. 31.
    Mitsui, T., Masuda, R., Kitao, S., Seto, M.: Nuclear resonant scattering of synchrotron radiation by 158Gd. J. Phys. Soc. Jpn. 74, 3122–3123 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Gardner, W.E., Penfold, J., Smith, T.F., Harris, I.R.: The magnetic properties of rare earth-Pd3 phases. J. Phys. F Metal Phys. 2, 133–150 (1972)ADSCrossRefGoogle Scholar
  33. 33.
    We assumed that the Debye temperature of cubic Gd2O3 is similar to that of monoclinic one. Haglund, J. A., Hunter, J. R.: Elastic properties of polycrystalline monoclinic Gd2O3. J. Am. Ceram. Soc. 56, 327–330 (1973)Google Scholar
  34. 34.
    Bauminger, E.R., Froindlich, D., Mustachi, A., Nowik, I., Ofer, S., Samuelov, S.: Magnetic and quadrupole moments of the 86.5 keV exicted state of 155Gd. Phys. Lett. B. 30, 531–532 (1969)ADSCrossRefGoogle Scholar
  35. 35.
    Kistner, O.C., Monaro, S., Segnan, R.: Recoilless resonance absorption in Ru99. Phys. Lett. 5, 299 (1963)ADSCrossRefGoogle Scholar
  36. 36.
    Brownie, E., Tuli, J.K.: Nuclear data sheets for a=99. Nuclear Data Sheets. 145, 25–340 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    Kusada, K., Kobayashi, H., Yamamoto, T., Matsumura, S., Sumi, N., Sato, K., Nagaoka, K., Kubota, Y., Kitagawa, H.: Discovery of face-centered cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method. J. Am. Chem. Soc. 135, 5493–5496 (2013)CrossRefGoogle Scholar
  38. 38.
    Kumara, L.S.R., Sakata, O., Kohara, S., Yang, A., Song, C., Kusada, K., Kobayashi, H., Kitagawa, H.: Origin of the catalytic activity of face-centered cubic ruthenium nanoparticles determined from an atomic-scale structure. Phys. Chem. Chem. Phys. 18, 30622 (2016)CrossRefGoogle Scholar
  39. 39.
    Kistner, O.C.: Recoil-free absorption hyperfine spectra of the 90-keV mixed transition in Ru99. Phys. Rev. 144, 1022–1030 (1966)ADSCrossRefGoogle Scholar
  40. 40.
    Kaindl, G., Potzel, W., Wagner, F., Zahn, U., Mössbauer, R.L.: Isomer shifts of the 90 keV γ-rays of 99Ru in ruthenium compounds. Z. Phys. 226, 103–115 (1969)ADSCrossRefGoogle Scholar
  41. 41.
    Quarterman, P., Sun, C., Garcia-Barriocanal, J., Mahendra, D.C., Yang, L., Manipatruni, S., Nikonov, D.E., Young, I.A., Voyles, P.M., Wang, J.-P.: Demonstration of Ru as the 4th ferromagnetic element at room temperature. Nat. Comm. 9, 2058 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    Cannon, J.F., Cannnn, D.M., Hall, H.T.: High pressure synthesis of SmB2 and GdB12. J. Less Comm. Met. 56, 83–90 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ryo Masuda
    • 1
    Email author
  • Kohei Kusada
    • 2
  • Takefumi Yoshida
    • 3
  • Shinji Michimura
    • 4
  • Yasuhiro Kobayashi
    • 1
  • Shinji Kitao
    • 1
  • Hiroyuki Tajima
    • 1
  • Takaya Mitsui
    • 5
  • Hirokazu Kobayashi
    • 2
  • Hiroshi Kitagawa
    • 2
  • Makoto Seto
    • 1
    • 4
    • 5
  1. 1.Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityOsakaJapan
  2. 2.Division of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan
  3. 3.Electronic Functional Macromolecules GroupNational Institute for Materials ScienceTsukubaJapan
  4. 4.Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
  5. 5.Synchrotron Radiation Research Center, Kansai Photon Science Institute, Quantum Beam Science Research DirectorateNational Institutes for Quantum and Radiological Science and TechnologySayo-gunJapan

Personalised recommendations