Hyperfine Interactions

, 241:11 | Cite as

Application of Mössbauer spectroscopy for classification of ordinary chondrites – different database and different methods

  • Jolanta Gałązka-FriedmanEmail author
  • Marek Woźniak
  • Patrycja Bogusz
  • Martyna Jakubowska
  • Łukasz Karwowski
  • Przemysław Duda
Open Access
Part of the following topical collections:
  1. Proceedings of the 5th Mediterranean Conference on the Applications of the Mössbauer Effect (MECAME 2019) and 41st Workshop of the French-speaking Group of Mössbauer Spectroscopy (GFSM 2019), Montpellier, France, 19-23 May 2019


Classification of the meteorites is very complex, but in general all meteorites can be divided into three groups: stony, iron and stony-iron. Ordinary chondrites are the most numerous group among stony meteorites. In this paper, we present short review of the methods of classification of ordinary chondrites. The classical method for the classification of ordinary chondrites is based on the determination of the content of fayalite in olivine and of the content of ferrosilite in pyroxene with the use of electron microprobe. This method was proposed in 1967. Studies on the application of Mössbauer spectroscopy to classification of ordinary chondrites were carried out since early 2000 in four Mössbauer laboratories. Mössbauer groups from Kanpur, Ekaterinburg and Canberra suggested qualitative methods of classification of ordinary chondrites. Warsaw group created quantitative method called the “4M method”. This name derives from following words: meteorites, Mössbauer spectroscopy, multidimensional discriminant analysis, Mahalanobis distance. In this publication, we describe the use of 4M method for reclassification of meteorite Goronyo.


Classification of meteorites Ordinary chondrites Mössbauer spectroscopy Multidimensional discriminant analysis Mahalanobis distance Meteorite Goronyo 



The authors would like to express their gratitude to Professor Israel Nowik.


  1. 1.
    Knudsen, J.M.: Mössbauer spectroscopy of 57Fe and the evolution of the solar system. Hyperfine Interact. 47, 3–31 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    Paliwal, B.S., Tripathi, R.P., Verma, H.C., Sharma, S.K.: Classification of the Didwana-Rajod meteorite: a Mössbauer spectroscopic study. Meteorit. Planet. Sci. 35, 639–642 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Verma, H.C., Rawat, A., Paliwal, B.S., Tripathi, R.P.: Mössbauer spectroscopic studies of an oxidized ordinary chondrite fallen at Itawa-Bhopji. India. Hyperfine Interact. 142, 643–652 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Verma, H.C., Jee, K., Tripathi, R.P.: Systematics of Mössbauer absorption areas in ordinary chondrites and applications to a newly fallen meteorite in Jodhpur. India. Meteor. Planet. Sci. 38, 963–967 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Prior, G.T.: The classification of meteorites. Mineral. Mag. 19, 51–63 (1920)Google Scholar
  6. 6.
    Mason, B.H.: The classification of chondritic meteorites. Am. Mus. Novit. 2085, 20 (1962)Google Scholar
  7. 7.
    Keil, K., Fredriksson, K.: The iron, magnesium and calcium distribution in coexisting olivine and rhombic pyroxenes in chondrites. J. Geophys. Res. Atmos. 69(16), 3487–3515 (1964)ADSCrossRefGoogle Scholar
  8. 8.
    Van Schmus, W.R., Wood, J.A.: A chemical-petrologic classification for the chondritic meteorites. Geochim. Cosmochim. Acta. 31(5), 747–765 (1967)ADSCrossRefGoogle Scholar
  9. 9.
    Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A.: A study of ordinary chondrites by Mössbauer spectroscopy with high-velocity resolution. Meteorit. Planet. Sci. 43(5), 941–958 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Maksimova, A.A., Oshtrakh, M.I., Chukin, A.V., Felner, I., Yakovlev, G.A., Semionkin, V.A.: Characterization of Northwest Africa 6286 and 7857 ordinary chondrites using X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 192, 275–284 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    Elewa Nancy N. Cadogan J. M.: An 57Fe Mössbauer study of the ordinary chondrite meteorite Lynch 001. Hyperfine Interact. 238, 4 (2017)Google Scholar
  12. 12.
    Bogusz, P., Brzózka, K., Górka, B., Szumiata, T., Woźniak, M., Gałązka-Friedman, J.: Classification of meteorites – Mössbauer comparative studies of three ordinary chondrites measured in different conditions. Acta Phys. Pol. A. 134(5), 1070–1075 (2018)CrossRefGoogle Scholar
  13. 13.
    Gałązka-Friedman, J., Szlachta, K., Karwowski, Ł., Woźniak, M.: Mössbauer studies of Soltmany and Shisr 176 meteorites—comparison with other ordinary chondrites. Hyperfine Interact. 226, 593–600 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Szlachta, K., Gałązka-Friedman, J., Woźniak, M.: Porównawcze badania mössbauerowskie meteorytów: Sołtmany (L6), Chelyabinsk (LL5) i Grzempy (H5) (Mössbauer comparative studies of the Sołtmany (L6), Chelyabinsk (LL5) and Grzempach (H5) meteorites). Acta Societatis Metheoriticae Polonorum. 5, 115–120 (2014)Google Scholar
  15. 15.
    Gałązka-Friedman, J., Woźniak, M., Duda, P., Rzepecka, P., Jakubowska, M., Karwowski, Ł.: Mössbauer spectroscopy—a useful method for classification of meteorites? Hyperfine Interact. 238, 11 (2017)CrossRefGoogle Scholar
  16. 16.
    Gałązka-Friedman, J., Woźniak, M., Duda, P., Jakubowska, M., Bogusz, P., Karwowski, Ł.: Próby klasyfikowania chondrytów zwyczajnych przez zastosowanie spektroskopii mössbauerowskiej. Acta Societatis Metheoriticae Polonorum. 10, 23–28 (2019)Google Scholar
  17. 17.
    Jakubowska, M., Buczek, A., Gwiździel, K., Djellouli, A., Nowak, F., Woźniak, M., Gałązka-Friedman, J., Karwowski, Ł., Duda, P.: Badania mössbauerowskie trzech chondrytów zwyczajnych typu H i trzech chondrytów zwyczajnych typu LL – wyznaczanie niepewności powierzchni spektralnych. Acta Societatis Metheoriticae Polonorum. 10, 34–39 (2019)Google Scholar
  18. 18.
    Jakubowska, M., Czarnecki, A., Robak, M., Zagrobelna, A., Bogusz, P., Woźniak, M., Gałązka-Friedman, J., Karwowski, Ł., Duda, P.: Badania mössbauerowskie 3 chondrytów zwyczajnych typu L (Beni M’hira, Hyattville, Saratov) – wyznaczanie niepewności powierzchni spektralnych. Acta Societatis Metheoriticae Polonorum. 10, 29–33 (2019)Google Scholar
  19. 19.
    Woźniak, M., Gałązka-Friedman, J., Duda, P., Jakubowska, M., Rzepecka, P., Karwowski, Ł.: Application of Mössbauer spectroscopy, multidimensional discriminant analysis, and Mahalanobis distance for classification of equilibrated ordinary chondrites. Meteorit. Planet. Sci. 54(8), 1828–1839 (2019)ADSCrossRefGoogle Scholar
  20. 20.
    Koblitz J. MetBase. Meteorite Data Retrieval Software. Version 7.3 (CD-ROM), Ritterhude, Germany 1994–(2012)Google Scholar

Copyright information

© The Author(s) 2019

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Authors and Affiliations

  • Jolanta Gałązka-Friedman
    • 1
    Email author
  • Marek Woźniak
    • 2
  • Patrycja Bogusz
    • 1
  • Martyna Jakubowska
    • 1
  • Łukasz Karwowski
    • 3
  • Przemysław Duda
    • 1
  1. 1.Faculty of PhysicsWarsaw University of TechnologyWarsawPoland
  2. 2.Faculty of BiologyUniversity of WarsawWarszawaPoland
  3. 3.Faculty of Earth SciencesUniversity of Silesia in KatowiceSosnowiecPoland

Personalised recommendations