Skip to main content

Mӧssbauer spectroscopy as a useful method for distinguishing between real and false meteorites


In our paper four Mӧssbauer spectra of ordinary chondrites (previously classified by a classical method based on determining the ratio of ferrosilite (Fs) to fayalite (Fa) with an electron microprobe) are presented and discussed. These are the Mӧssbauer spectra of two ordinary chondrites type H (Pultusk and Grzempach), one ordinary chondrite type L (Hyattville) and one type LL (NWA 6287). These meteorites were compared, using their Mӧssbauer spectra with the following four other samples: a fragment of a rock that fell near Leoncin in Poland (sample No. 1), a fragment of a rock found in the vicinity of Pultusk in Poland (sample No. 2), a meteorite specimen bought on the meteorite exchange (sample No. 3) and a stone object whose decline was observed in Europe (sample No. 4). The spectrum of sample No. 1 is very similar to the spectrum of ordinary chondrite of type LL. This observation was confirmed using 4M method (previously created by us). The spectrum of sample No. 2 differs significantly from the spectrum of sample of the Pultusk meteorite. In the spectrum of sample No. 3, a clear signal from iron-nickel alloy and troilite can be observed. This fact allows us to state that sample No. 3 is a fragment of rock that was created in cosmic conditions. Sample No. 4 has a Mӧssbauer spectrum similar to the spectrum of terrestrial magmatic rocks. This observation does not clearly determine where the examined object comes from. This work demonstrates the usefulness of Mӧssbauer spectroscopy in recognizing samples that are fragments of meteorites.


  1. 1.

    Knudsen, J.M.: Mössbauer spectroscopy of 57Fe and the evolution of the solar system. Hyperfine Interact. 47, 3–31 (1989)

    ADS  Article  Google Scholar 

  2. 2.

    Paliwal, B.S., Tripathi, R.P., Verma, H.C., Sharma, S.K.: Classification of the Didwana-Rajod meteorite: a Mössbauer spectroscopic study. Meteorit. Planet. Sci. 35, 639–642 (2000)

    ADS  Article  Google Scholar 

  3. 3.

    Verma, H.C., Rawat, A., Paliwal, B.S., Tripathi, R.P.: Mössbauer spectroscopic studies of an oxidized ordinary chondrite fallen at Itawa-Bhopji. India. Hyperfine Interact. 142, 643–652 (2002)

    ADS  Article  Google Scholar 

  4. 4.

    Verma, H.C., Jee, K., Tripathi, R.P.: Systematics of Mössbauer absorption areas in ordinary chondrites and applications to a newly fallen meteorite in Jodhpur. India. Meteorit. Planet. Sci. 38, 963–967 (2003)

    ADS  Article  Google Scholar 

  5. 5.

    Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A.: A study of ordinary chondrites by Mössbauer spectroscopy with high-velocity resolution. Meteorit. Planet. Sci. 43(5), 941–958 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    Maksimova, A.A., Oshtrakh, M.I., Chukin, A.V., Felner, I., Yakovlev, G.A., Semionkin, V.A.: Characterization of Northwest Africa 6286 and 7857 ordinary chondrites using X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 192, 275–284 (2018)

    ADS  Article  Google Scholar 

  7. 7.

    Elewa Nancy N. · Cadogan J. M.: An 57Fe Mössbauer study of the ordinary chondrite meteorite Lynch 001. Hyperfine Interact.. 238, 4 (2017)

    ADS  Article  Google Scholar 

  8. 8.

    Bogusz, P., Brzózka, K., Górka, B., Szumiata, T., Woźniak, M., Gałązka-Friedman, J.: Classification of meteorites – Mössbauer comparative studies of three ordinary chondrites measured in different conditions. Acta Phys. Pol. A. 134(5), 1070–1075 (2018)

    Article  Google Scholar 

  9. 9.

    Gałązka-Friedman, J., Szlachta, K., Karwowski, Ł., Woźniak, M.: Mössbauer studies of Soltmany and Shisr 176 meteorites—comparison with other ordinary chondrites. Hyperfine Interact. 226, 593–600 (2014)

    ADS  Article  Google Scholar 

  10. 10.

    Szlachta, K., Gałązka-Friedman, J., Woźniak, M.: Porównawcze badania mössbauerowskie meteorytów: Sołtmany (L6), Chelyabinsk (LL5) i Grzempy (H5) (Mössbauer comparative studies of the Sołtmany (L6), Chelyabinsk (LL5) and Grzempach (H5) meteorites). Acta Soc. Metheor. Polonorum. 5, 115–120 (2014)

    Google Scholar 

  11. 11.

    Gałązka-Friedman, J., Woźniak, M., Duda, P., Rzepecka, P., Jakubowska, M., Karwowski, Ł.: Mössbauer spectroscopy—a useful method for classification of meteorites? Hyperfine Interact. 238, 11 (2017)

    Article  Google Scholar 

  12. 12.

    Gałązka-Friedman, J., Woźniak, M., Duda, P., Jakubowska, M., Bogusz, P., Karwowski, Ł.: Próby klasyfikowania chondrytów zwyczajnych przez zastosowanie spektroskopii mössbauerowskiej. Acta Soc. Metheor. Polonorum. 10, 23–28 (2019)

    Google Scholar 

  13. 13.

    Jakubowska, M., Buczek, A., Gwiździel, K., Djellouli, A., Nowak, F., Woźniak, M., Gałązka-Friedman, J., Karwowski, Ł., Duda, P.: Badania mössbauerowskie trzech chondrytów zwyczajnych typu H i trzech chondrytów zwyczajnych typu LL – wyznaczanie niepewności powierzchni spektralnych. Acta Soc. Metheor. Polonorum. 10, 34–39 (2019)

    Google Scholar 

  14. 14.

    Jakubowska, M., Czarnecki, A., Robak, M., Zagrobelna, A., Bogusz, P., Woźniak, M., Gałązka-Friedman, J., Karwowski, Ł., Duda, P.: Badania mössbauerowskie 3 chondrytów zwyczajnych typu L (Beni M’hira, Hyattville, Saratov) – wyznaczanie niepewności powierzchni spektralnych. Acta Soc. Metheor. Polonorum. 10, 29–33 (2019)

    Google Scholar 

  15. 15.

    Woźniak, M., Gałązka-Friedman, J., Duda, P., Jakubowska, M., Rzepecka, P., Karwowski, Ł.: Application of Mössbauer spectroscopy, multidimensional discriminant analysis, and Mahalanobis distance for classification of equilibrated ordinary chondrites. Meteorit. Planet. Sci. 54(8), 1828–1839 (2019)

    ADS  Article  Google Scholar 

  16. 16.

    Murad, E.: Clays and clay minerals: what can Mössbauer spectroscopy do to help understand them? Hyperfine Interact. 117, 39–70 (1998)

    ADS  Article  Google Scholar 

  17. 17.

    Herra W, Skerra H: Mössbauer spectroscopy applied to the classification of stone meteorites. In: Millman, P.M (ed) Meteoritic Research. Astrophysics and Space Series. Science Library, vol. 12, pp. 106–122. D. Reidel Pub. Co. Dordrecht (1969)

    Chapter  Google Scholar 

Download references


The authors would like to thank Maciej Burski and Mateusz Szyszka for providing meteorite samples for Mӧssbauer measurements.

Author information



Corresponding author

Correspondence to Jolanta Gałązka-Friedman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME2019), 1-6 September 2019, Dalian, China

Edited by Tao Zhang, Junhu Wang and Xiaodong Wang

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bogusz, P., Gałązka-Friedman, J., Brzózka, K. et al. Mӧssbauer spectroscopy as a useful method for distinguishing between real and false meteorites. Hyperfine Interact 240, 126 (2019).

Download citation


  • Mӧssbauer spectroscopy
  • Classification of meteorites
  • Ordinary chondrites
  • 4M method
  • Meteorite Pultusk
  • Aubrite