Fe microenvironments in heat treated rare-earth exchanged montmorillonites


The rare-earth bentonites were prepared from Ca-bentonite by suspending Ca-bentonite in rare-earth (Ce, La, Y) perchlorate solution. 57Fe Mössbauer spectra of rare earth montmorillonites before heat treatments showed a doublet envelop at room temperature, reflecting dominantly Fe3+ assigned to (cis) octahedral site in the montmorillonite. At the same time, the 80 K spectra of these rare-earth exchanged montmorillonites revealed an additional magnetically split component, too, associated with iron atoms intercalated in the interlayer space. In the case of heat treated samples (250 °C, 360 °C and 500 °C for 4 h), a new doublet component associated with Fe3+ at trans octahedral site, appeared in both the 295 K and 80 K Mössbauer spectra. Powder X-ray diffractometry (XRD) measurements of the heat treated rare earth montmorillonites revealed that a gradual mineral phase transformation of montmorillonite to muscovite occurred upon the applied heat treatments, being consistent with the completing electron magnetic resonance (EMR) and Mössbauer spectroscopy (MS) results.


  1. 1.

    Komlósi, A., Kuzmann, E., Nagy, N.M., Homonnay, Z., Kubuki, S., Kónya, J.: Incorporation of Fe in the interlayer of Na-bentonite via treatment with FeCl3 in acetone. Clay Clay Miner. 55, 91–97 (2007)

  2. 2.

    Kuzmann, E., Garg, V.K., Singh, H., de Oliveira, A.C., Pati, S.S., Homonnay, Z., Rudolf, M., Molnár, Á.M., Kovács, E.M., Baranyai, E., Kubuki, S., Nagy, N.M., Kónya, J.: Mössbauer study of pH dependence of iron-intercalation in montmorillonite. Hyperfine Interact. 237(1), 16 (2016)

  3. 3.

    Kuzmann, E., Singh, L.H., Garg, V.K., de Oliveira, A.C., Kovács, E.M., Molnár, Á.M., Homonnay, Z., Kónya, P., Nagy, M.N., Kónya, J.: Mössbauer study of the effect of rare earth substitution into montmorillonite. Hyperfine Interact. 237(1), 1–8 (2016)

  4. 4.

    Kovács, E.M., Erdélyiné Baradács, E., Kónya, P., Kovács-Pálffy, P., Harangi, S., Kuzmann, E., Kónya, J., Nagy, N.M.: Preparation and structure’s analyses of lanthanide (Ln) -exchanged bentonites. Colloids and Surfaces A: Physicochem. Eng. Aspects. 522, 287–294 (2017)

    Article  Google Scholar 

  5. 5.

    Klencsár, Z., Kuzmann, E., Vértes, A.: User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. Artic. 210(1), 105–118 (1996)

    Article  Google Scholar 

  6. 6.

    Bala, P., Samantary, B.K., Srivastava, S.K.: Dehydration transformation in Ca-montmorillonite. Bull. Mater. Sci. 23, 61–67 (2000)

    Article  Google Scholar 

  7. 7.

    Keller, W.D., Reynolds, R.C., Inoue, A.: Morphology of clay minerals in the smectite-to-illite conversion series by scanning electron microscopy. Clay Clay Miner. 34, 187–197 (1986)

    ADS  Article  Google Scholar 

  8. 8.

    Stevens, J.G., Pollak, H., Li, Z., Stevens, V.G., White, R.M., Gibson, J.L.: Mössbauer Handbook, Mineral References and Mineral Data. Mössbauer Effect Data Center, Asheville (1983)

    Google Scholar 

  9. 9.

    Dainyak, L.G., Drits a, V.: A model for the interpretation of Mössbauer spectra of muscovite. Eur. J. Mineral. 21, 99–106 (2009)

    ADS  Article  Google Scholar 

  10. 10.

    Lück, R., Stösser, R., Gyepesová, C., Slosiariková, Н., Kolditz, L.: Study of Montmorillonites from Several Deposits. Chem. Papers 47, 79–84 (1993)

  11. 11.

    Klencsár, Z., Köntös, Z.: EPR analysis of Fe3+and Mn2+ complexation sites in fulvic acid extracted from lignite. J. Phys. Chem. A. 122, 3190–3203 (2018)

    Article  Google Scholar 

Download references


Open access funding provided by Eötvös Loránd University (ELTE). The financial supports from NKFIH OTKA (No. K115913, K115784, K131963, and K120265) and Hungarian-Croatian S&T (No TÉT_16-1-2016-0002) as well as by the EU and co-financed by the European Regional Development Fund under the project GINOP-2.3.2-15-2016-00008 grants are acknowledged. Z.K. expresses thanks to Prof. Ferenc Simon (Institute of Physics, Budapest University of Technology and Economics, Budapest, Hungary) for making available the applied spectrometer for recording the EMR spectra.

Author information



Corresponding author

Correspondence to Erno Kuzmann.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 5th Mediterranean Conference on the Applications of the Mössbauer Effect (MECAME 2019) and 41st Workshop of the French-speaking Group of Mössbauer Spectroscopy (GFSM 2019), Montpellier, France, 19-23 May 2019

Edited by Pierre-Emmanuel Lippens, Yann Garcia, Moulay-Tahar Sougrati and Mira Ristic (†)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuzmann, E., Kovács, E.M., Homonnay, Z. et al. Fe microenvironments in heat treated rare-earth exchanged montmorillonites. Hyperfine Interact 240, 87 (2019). https://doi.org/10.1007/s10751-019-1622-7

Download citation


  • Rare earth-montmorillonite
  • 57Fe Mössbauer spectroscopy
  • Interlayer Fe
  • Phase transition
  • Electron magnetic resonance