Hyperfine Interactions

, 240:76 | Cite as

Fe3C nanoparticle formation in Fe implanted HOPG and CVD diamond

  • Krishanlal Bharuth-RamEmail author
  • Hilary Masenda
  • Carsten Ronning
  • Hans Hofsäss
Part of the following topical collections:
  1. Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10-15 February 2019


We have conducted conversion electron Mössbauer spectroscopy (CEMS) studies of Fe-carbides produced in Fe implanted highly oriented pyrolytic graphite (HOPG) and CVD diamond substrates. The samples were implanted at room temperature with 57Fe ions with 40 keV and 60 keV, respectively, and corresponding fluences of 1.0·1016/cm2 and 5·1015/cm2. The formation of magnetic structures in the spectra was monitored with CEMS measurement after annealing the samples at temperatures up to 700 °C. After the high temperature annealing, the main components in the spectra were sextets whose line shapes displayed strong, asymmetric distortions, consistent with those due the formation of nanoclusters. The hyperfine magnetic fields Bhf = 21.6 T, 20.0 T and 18 (1) T were in good agreement with those observed previously for Fe3C nanoclusters 10–20 nm in size.


Mössbauer spectroscopy; HOPG CVD diamond Fe3C nanoparticles 



The authors acknowledge the support of the National Research Foundation (South Africa) and of the Alexander von Humboldt (AvH) Foundation within the framework its of “Institutspartnerschaft”.


  1. 1.
    Pérez-Cabero, M., Taboada, J.B., Guerrero-Ruiz, A., Overweg, A.R., Rodríguez-Ramos, I.: The role of alpha-iron and cementite phases in the growing mechanism of carbon nanotubes: a 57Fe Mössbauer spectroscopy study. Phys. Chem. Chem. Phys. 8, 1230–12355 (2006)CrossRefGoogle Scholar
  2. 2.
    Wang, C.F., Wang, J.N., Shen, Z.M.: Solid-phase synthesis of carbon-encapsulated magnetic nanoparticles. J. Phys. Chem. C. 111, 6303–6307 (2007)CrossRefGoogle Scholar
  3. 3.
    Sajitha, E.P., Prasad, V., Subramanyam, S.V., Mishra, A.K., Sarkar, S.S., Bansal, C.: Size-dependent magnetic properties of iron carbide nanoparticles embedded in a carbon matrix. J. Phys. Condens. Matter. 19, 046214 (2007) (13pp)ADSCrossRefGoogle Scholar
  4. 4.
    Niemantsverdriet, J.W., van der Kraan, A.M., van Dijk, W.L., van der Baan, H.S.: Behavior of metallic Iron catalysts during Fischer-Tropsch synthesis studied with Mtissbauer spectroscopy, X-ray diffraction, carbon content determination and reaction kinetic measurements. J. Phys. Chem. 84, 3363–3700 (1980)CrossRefGoogle Scholar
  5. 5.
    Herrantz, T., Rojas, S., Perez-Alonso, F.J., Ojeda, M., Terreros, P., Fierro, J.L.G.: Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthetic gas. J. Catal. 243, 199–211 (2006)CrossRefGoogle Scholar
  6. 6.
    Le Caër, G., Dubois, J.M., Picholat, M., Perrichon, V., Bussiere, P.: Charactersation by Mössbauer spectroscopy of iron carbides formed in Fischer Tropsch synthesis. J. Phys. Chem. 86, 4799–4808 (1982)CrossRefGoogle Scholar
  7. 7.
    Bi, X.-X., Ganguly, B., Huffman, G.P., Huggins, P.E., Endo, M., Eklund, P.C.: Nanocrystalline a-Fe, Fe3C and Fe7C3 produced by CO2 laser pyrolysis. J. Mater. Res. 8, 166–1674 (1993)CrossRefGoogle Scholar
  8. 8.
    Carpene, E., Schaaf, P.: Formation of Fe3C surface layers by laser plasma cementation. Appl. Phys. Lett. 80, 891–894 (2002). ADSCrossRefGoogle Scholar
  9. 9.
    Ziegler, J.F., Ziegler, M., Biersack, J.: The stopping and range of ions in solids. Nucl. Instrum. Methods. Phys. Res. B. 268, 1818–1823 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Lagarec, K., Rancourt, D.: Extended Voigt-based analytic lineshape method for determining N-dimensional correlated hyperfine parameter distributions in Mössbauer spectroscopy. Nucl. Instrum. Methods. Phys. Res. B. 129, 266–280 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    Bharuth-Ram, K., Hartick, M., Kankeleit, E., Dorn, C., Held, P., Sielemann, R., Wende, L., Kübler, J., Sellschop, J.P.F.: Recoil-implanted 57Fe in diamond. Phys. Rev. B. 58, 8955–8959 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Weyer, G., Gunnlaugsson, H.P., Dietrich, M., Fynbo, H., Bharuth-Ram, K.: Mössbauer Spectroscopy on Fe impurities in Diamond. Eur. Phys. J. Appl. Phys. 27, 317–320 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Van Rossum, M., Langouche, G., De Bruyn, J., Coussement, R.: Amorphization in co implanted diamond. Phys. Lett. A. 73, 127–128 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    Uzan-Saguy, C., Cystermann, C., Rener, R., Richter, V., Shaanan, M., Kalish, R.: Damage threshold for ion-beam induced graphitization of diamond. Appl. Phys. Lett. 67, 1194–1196 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    Gleiter, H.: Nanocrystalline materials. Prog Mater Sci. 53, 223b–2315b (1989)Google Scholar
  16. 16.
    Krämer, A., Jing, J., Gonser, U.: Magnetism of Nanocrystalline materials. Hyp. Inter. 54, 591–598 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Physics DepartmentDurban University of TechnologyDurbanSouth Africa
  3. 3.School of PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa
  4. 4.Institute for Solid State PhysicsFriedrich-Schiller University of JenaJenaGermany
  5. 5.Second Physics InstituteUniversity of GöttingenGöttingenGermany

Personalised recommendations