Hyperfine Interactions

, 240:42 | Cite as

X-ray diffraction and Mössbauer spectroscopy of Gandom Beryan 008 ordinary chondrite

  • Evgeniya V. Petrova
  • Alevtina A. Maksimova
  • Andrey V. Chukin
  • Michael I. OshtrakhEmail author
Part of the following topical collections:
  1. Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10-15 February 2019


The results of the study of newly found Gandom Beryan 008 H5 ordinary chondrite by means of X-ray diffraction and Mössbauer spectroscopy with additional characterization by optical and scanning electron microscopy are considered. The main iron-bearing phases and their hyperfine parameters were determined. A comparison of Fe2+ occupancies of the M1 and M2 sites in olivine and orthopyroxene determined by X-ray diffraction and Mössbauer spectroscopy data demonstrates some consistency and partial oxidation of Fe2+ in olivine.


Mössbauer spectroscopy X-ray diffraction Ordinary chondrite 



The authors wish to thank S.S. Hontsova for her help with optical microscopy and G.A. Yakovlev for his help with scanning electron microscopy with energy dispersive spectroscopy measurements. This work was supported by the Ministry of Science and Higher Education of the Russian Federation (the Project № 3.1959.2017/4.6) and Act 211 Government of the Russian Federation, contract № 02.A03.21.0006.


  1. 1.
    Jarosewich, E.: Chemical analyses of meteorites: a compilation of stony and iron meteorite analyses. Meteoritics. 25, 323–337 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    Rubin, A.E.: Mineralogy of meteorite groups. Meteorit. Planet. Sci. 32, 231–247 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Hontsova, S.S., Petrova, E.V., Chukin, A.V., Maksimova, A.A., Maksimova, E.M., Oshtrakh, M.I.: The first characterization of a newly found Iranian meteorite Gandom Beryan 008. Meteor. Planet. Sci. 53(SI, Suppl. 1), 6111 (2018) (Abstract)Google Scholar
  4. 4.
    Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Novikov, E.G.: Mössbauer spectroscopy with high velocity resolution: an increase of analytical possibilities in biomedical research. J. Radioanal. Nucl. Chem. 281, 63–67 (2009)CrossRefGoogle Scholar
  5. 5.
    Semionkin, V.A., Oshtrakh, M.I., Milder, O.B., Novikov, E.G.: A high velocity resolution Mössbauer spectrometric system for biomedical research. Bull. Rus. Acad. Sci.: Phys. 74, 416–420 (2010)Google Scholar
  6. 6.
    Oshtrakh, M.I., Semionkin, V.A.: Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 100, 78–87 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Oshtrakh, M.I., Semionkin V.A.: Mössbauer spectroscopy with a bigh velocity resolution: principles and applications. In: J. Tuček, M. Miglierini (eds.) Proceedings of the International Conference mössbauer Spectroscopy in Materials Science 2016, AIP Conference Proceedings. AIP Publishing, Melville, New York, 1781, 020019 (2016)Google Scholar
  8. 8.
    Maksimova, A.A., Oshtrakh, M.I., Chukin, A.V., Felner, I., Yakovlev, G.A., Semionkin, V.A.: Characterization of Northwest Africa 6286 and 7857 ordinary chondrites using X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 192, 275–284 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Munayco, P., Munayco, J., Valenzuela, M., Rochette, P., Gattacceca, J., Scorzelli, R.B.: 57Fe Mössbauer spectroscopy studies of chondritic meteorites from the Atacama Desert, Chile: implications for weathering processes. Hyperfine Interact. 224, 257–262 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Zboril, R., Mashlan, M., Petridis, D.: Iron(III) oxides from thermal processes – synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem. Mater. 14, 969–982 (2002)CrossRefGoogle Scholar
  11. 11.
    Murad, E.: Mössbauer spectroscopy of clays, soils and their mineral constituents. Clay Miner. 45, 413–430 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Osborne, M.D., Fleet, M.E., Bancroft, G.M.: Fe2+–Fe3+ ordering in chromite and Cr-bearing spinels. Contrib. Mineral. Petrol. 77, 251–255 (1981)ADSCrossRefGoogle Scholar
  13. 13.
    Lenaz, D., Skogby, H.: Structural changes in the FeAl2O4–FeCr2O4 solid solution series and their consequences on natural Cr-bearing spinels. Phys. Chem. Minerals. 40, 587–595 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Murad, E., Johnston, J.H.: Iron oxides and Oxyhydroxides. In: Long, G.J. (ed.) Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 2, pp. 507–582. Plenum Press, New York (1987)Google Scholar
  15. 15.
    Yakovlev, G.A., Chukin, A.V., Grokhovsky, V.I., Semionkin, V.A., Oshtrakh, M.I.: Study of Dronino iron meteorite weathering in clay sand using Mössbauer spectroscopy. Croat. Chem. Acta. 89, 117–124 (2016)CrossRefGoogle Scholar
  16. 16.
    Schmidbauer, E.: 57Fe Mössbauer spectroscopy and magnetization of cation-deficient Fe2TiO4 and FeCr2O4. Part I: 57Fe Mössbauer spectroscopy. Phys. Chem. Miner. 14, 533–641 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    Quintiliani, M., Andreozzi, G.B., Skogby, H.: Synthesis and Mössbauer characterization of Fe1+xCr2-xO4 (0 ≤ x ≤ 2/3) spinel single crystals. Period. Mineral. 80(Special Issue), 39–55 (2011)Google Scholar
  18. 18.
    Maksimova, A.A., Chukin, A.V., Oshtrakh, M.I.: Revealing of the minor iron-bearing phases in the Mössbauer spectra of Chelyabinsk LL5 ordinary chondrite fragment. In: J. Tuček, M. Miglierini (eds.) Proceedings of the International Conference mössbauer Spectroscopy in Materials Science 2016, AIP Conference Proceedings. AIP Publishing, Melville, New York, 1781, 020016 (2016)Google Scholar
  19. 19.
    Malysheva, T.V.: Mössbauer Effect in Geochemistry and Cosmochemistry, p. 166. Nauka, Moscow (1975) (in Russian)Google Scholar
  20. 20.
    Wang, L., Moon, N., Zhang, Y., Dunham, W.R., Essene, E.J.: Fe-Mg order-disorder in orthopyroxenes. Geochim. Cosmochim. Acta. 69, 5777–5788 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A.: A study of ordinary chondrites by Mössbauer spectroscopy with high-velocity resolution. Meteorit. Planet. Sci. 43, 941–958 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Shinno, I.: A Mössbauer study of ferric iron in olivine. Phys. Chem. Miner. 7, 91–95 (1981)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Experimental Physics, Institute of Physics and TechnologyUral Federal UniversityEkaterinburgRussian Federation

Personalised recommendations