Skip to main content
Log in

muCool: a novel low-energy muon beam for future precision experiments

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Experiments with muons (μ+) and muonium atoms (μ+e) offer several promising possibilities for testing fundamental symmetries. Examples of such experiments include the search for a muon electric dipole moment, measurement of the muon g − 2 and experiments with muonium from laser spectroscopy to gravity experiments. These experiments require high quality muon beams with small transverse size and high intensity at low energy. At the Paul Scherrer Institute, Switzerland, we are developing a novel device that reduces the phase space of a standard μ+ beam by a factor of 1010 with 10− 3 efficiency. The phase space compression is achieved by stopping a standard μ+ beam in cryogenic helium gas. The stopped μ+ are manipulated into a small spot using complex electric and magnetic fields in combination with gas density gradients. From there, the muons are extracted into the vacuum and into a field-free region. Various aspects of this compression scheme have been demonstrated. In this article the current status will be reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagamine, K.: Introductory Muon Science. Cambridge University Press (2003)

  2. de Rėotier, P.D., Yaouanc, A.: Muon spin rotation and relaxation in magnetic materials. J. Phys. Condens. Matter 9(43), 9113 (1997)

    Article  ADS  Google Scholar 

  3. Jungmann, K.P.: Free muons and muonium: some achievements and possibilities in low energy muon physics. Nucl. Phys. News 12(3), 23 (2002)

    Article  Google Scholar 

  4. Bennett, G.W., Bousquet, B., et al.: Measurement of the negative muon anomalous magnetic moment to 0.7 ppm. Phys. Rev. Lett. 92(16), 161802 (2004)

    Article  ADS  Google Scholar 

  5. Bennett, G.W., Bousquet, B., et al.: Improved limit on the muon electric dipole moment. Phys. Rev. D 80(5), 052008 (2009)

    Article  ADS  Google Scholar 

  6. Adam, J., Bai, X., et al.: A limit for the \({\upmu }{\rightarrow } e{\gamma }\) decay from the MEG experiment. Nucl. Phys. B 834(1–2), 1 (2010)

    Article  ADS  Google Scholar 

  7. Berger, N., et al.: The Mu3e experiment. Nucl. Phys. B - Proc. Suppl. 248–250, 35 (2014)

    Article  ADS  Google Scholar 

  8. Jungmann, K.P.: Muonium - physics of a most fundamental atom. Nucl. Phys. B-Proceedings Suppl. 155, 355 (2006)

    Article  ADS  Google Scholar 

  9. Crivelli, P.: The Mu-MASS (muonium laser spectroscopy) experiment. Hyperfine Interact. 239(1), 49 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Kirch, K., Khaw, K.S.: Testing gravity with muonium. Int. J. Mod. Phys. Conf. Ser 30, (1460258) (2014)

    Article  Google Scholar 

  11. Kaplan, D., Antognini, A., et al.: Studying antimatter gravity with muonium. Atoms 6(2), 17 (2018)

    Article  ADS  Google Scholar 

  12. Nagamine, K.: Past, present and future of ultra-slow muons. JPS Conf. Proc. 2, 010001 (2014)

    Google Scholar 

  13. Taqqu, D.: Compression and extraction of stopped muons. Phys. Rev. Lett. 97 (19), 194801 (2006)

    Article  ADS  Google Scholar 

  14. Heylen, A.E.D.: Electrical ionisation and breakdown of gases in a crossed magnetic field. IEE Proc. A 127(4), 221 (1980)

    Google Scholar 

  15. Wichmann, G., Antognini, A., et al.: Neutron radiography of a static density gradient of 3He gas at cryogenic temperatures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect Assoc. Equip. 814, 33 (2016)

    Article  ADS  Google Scholar 

  16. Bao, Y., Antognini, A., et al.: Muon Cooling: longitudinal compression. Phys. Rev. Lett. 112(22), 224801 (2014)

    Article  ADS  Google Scholar 

  17. Antognini, A., Bao, Y., et al.: muCool: a next step towards efficient muon beam compression, arXiv:1811.08332 (2018)

Download references

Acknowledgements

This work was supported by the SNF grants No. 200020_159754 and 200020_172639.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Belosevic.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Edited by Ryan Ringle, Stefan Schwarz, Alain Lapierre, Oscar Naviliat-Cuncic, Jaideep Singh and Georg Bollen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belosevic, I., Antognini, A., Bao, Y. et al. muCool: a novel low-energy muon beam for future precision experiments. Hyperfine Interact 240, 41 (2019). https://doi.org/10.1007/s10751-019-1589-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1589-4

Keywords

Navigation