Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A compact RFQ cooler buncher for CRIS experiments

Abstract

A compact radio frequency cooler buncher (RFQCB) is currently in development between The University of Manchester, KU Leuven, and CERN. The device will be installed as part of the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at the Isotope separator On-line device (ISOLDE) at CERN. The purpose of developing a dedicated RFQCB for the CRIS experiment is to increase data collection efficiency, and simplify the process of obtaining reference measurements with stable isotopes. The CRIS technique is outlined in addition to an overview of the proposed RFQCB, and its potential compatibility for implementation at ISOLDE.

References

  1. 1.

    Cocolios, T.E., Al Suradi, H.H., Billowes, J., Budinevi, I., de Groote, R.P., De Schepper S., Fedosseev, V.N., Flanagan, K.T., Franchoo, S., Garcia Ruiz, R.F., Heylen, H., Le Blanc, F., Lynch, K.M., Marsh, B.A., Mason, P.J.R., Neyens, G., Papuga, J., Procter, T.J., Rajabali, M.M., Rossel, R.E., Rothe, S., Simpson, G.S., Smith, A.J., Strashnov, I., Stroke. H. H., Verney, D., Walker, P.M., Wendt, K.D.A., Wood, R.T.: The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms”,XVIth International Conference on ElectroMagnetic Isotope Separators and Techniques Related to their Applications, December 2–7, 2012 at Matsue, Japan

  2. 2.

    de Groote, R.P., Billowes, J., Binnersley, C.L., Bissell, M.L., Cocolios, T.E., Day Goodacre, T., Farooq-Smith, G.J., Fedorov, D.V., Flanagan, K.T., Franchoo, S., Garcia Ruiz, R.F., Koszorús, Á., Lynch, K.M., Neyens, G., Nowacki, F., Otsuka, T., Rothe, S., Stroke, H.H., Tsunoda, Y., Vernon, A.R., Wendt, K.D.A., Wilkins, S.G., Xu, Z.Y., Yang, X.F.: Dipole and quadrupole moments of 73 − 78Cu as a test of the robustness of the Z = 28 shell closure near 78Ni

  3. 3.

    Farooq-Smith, G.J., Vernon, A.R., Billowes, J., Binnersley, C.L., Bissell, M.L., Cocolios, T.E., Day Goodacre, T., de Groote, R.P., Flanagan, K.T., Franchoo, S., Garcia Ruiz, R.F., Gins, W., Lynch, K.M., Marsh, B.A., Neyens, G., Rothe, S., Stroke, H.H., Wilkins, S.G., Yang, X.F.: Probing the 31Ga ground-state properties in the region near Z = 28 with highresolution laser spectroscopy. Phys. Rev. C 96(4), 044324 (2017). https://doi.org/10.1103/PhysRevC.96.044324

  4. 4.

    Lynch, K.M., Wilkins, S.G., Billowes, J., Binnersley, C.L., Bissell, M.L., Chrysalidis, K., Cocolios, T.E., Goodacre, T.D., de Groote, R.P., Farooq-Smith, G.J., Fedorov, D.V., Fedosseev, V.N., Flanagan, K.T., Franchoo, S., Garcia Ruiz, R.F., Gins, W., Heinke, R., Koszorús, Á., Marsh, B.A., Molkanov, P.L., Naubereit, P., Neyens, G., Ricketts, C.M., Rothe, S., Seiffert, C., Seliverstov, M.D., Stroke, H.H., Studer, D., Vernon, A.R., Wendt, K.D.A., Yang, X.F.: Laser-spectroscopy studies of the nuclear structure of neutron-rich radium. Phys. Rev. C 97(2), 024309 (2018). https://doi.org/10.1103/PhysRevC.97.024309

  5. 5.

    Wilkins, S.G., Lynch, K.M., Billowes, J., Binnersley, C.L., Bissell, M.L., Cocolios, T.E., Goodacre, T.D., de Groote, R.P., Farooq-Smith, G.J., Flanagan, K.T., Franchoo, S., Ruiz, R.F.G., Gins, W., Heylen, H., Koszorús, Á., Neyens, G., Stroke, H.H., Vernon, A.R., Wendt, K.D.A., Yang, X.F.: Quadrupole moment of 203Fr. Phys. Rev. C 96(3), 034317 (2017). https://doi.org/10.1103/PhysRevC.96.034317

  6. 6.

    Catherall, R., Andreazza, W., Breitenfeldt, M., Dorsival, A., Focker, G.J., Gharsa, T.P., Giles, T.J., Grenard, J.L., Locci, F., Martins, P., Marzari, S., Schipper, J., Shornikov, A., Stora, T.: The ISOLDE facility. J. Phys. G: Nucl. Part. Phys. 44(9), 094002 (2017)

  7. 7.

    Mané, E., Billowes, J., Blaum, K., Campbell, P., Cheal, B., Delahaye, P., Flanagan, K., Forest, D., Franberg, H., Geppert, C., Giles, T., Jokinen, A., Kowalska, M., Neugart, R., Neyens, G., Nörtershäuser, W., Podadera, I., Tungate, G., Vingerhoets, P., Yordanov, D.T.: An ion cooler-buncher for high-sensitivity collinear laser spectroscopy at ISOLDE. Eur. Phys. J. A 42, 503–507 (2009). https://doi.org/10.1140/epja/i2009-10828-0

  8. 8.

    Garcia Ruiz, R.F., Vernon, A.R., Binnersley, C.L., Sahoo, B.K., Bissell, M., Billowes, J., Cocolios, T.E., Gins, W., de Groote, R.P., Flanagan, K.T., Koszorus, A., Lynch, K.M., Neyens, G., Ricketts, C.M., Wendt, K.D.A., Wilkins, S.G., Yang, X.F.: High-precision multiphoton ionization of accelerated laser-ablated species. Phys. Rev. X 8(4), 041005 (2018)

  9. 9.

    Klose, A., Minamisono, K., Geppert, C. h., Frömmgen, N., Hammen, M., Krämer, J., Krieger, A., Levy, C.D.P., Mantica, P.F., Nörtershäuser, W., Vinnikova, S.: Tests of atomic charge-exchange cells for collinear laser spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 678, 114–121 (2012)

  10. 10.

    Nieminen, A., Huikari, J., Jokinen, A., Äystö, J., Campbell, P., Cochrane, E.C.A.: Beam cooler for low-energy radioactive ions. Nucl. Instrum. Methods Phys. Res., Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 469(2), 244–253 (2001)

  11. 11.

    Smith, M.: A square-wave-driven radiofrequency quadrupole cooler and buncher for titan (2005)

  12. 12.

    Minamisono, K., Mantica, P.F., Klose, A., Vinnikova, S., Schneider, A., Johnson, B., Barquest, B.R.: Commissioning of the collinear laser spectroscopy system in the BECOLA facility at NSCL. Nucl. Instrum. Methods Phys. Res., Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 709, 85–94 (2013). ISSN 0168-9002

  13. 13.

    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926), 64–71 (1989)

Download references

Acknowledgements

This work was supported by ERC Consolidator Grant No. 648381 (FNPMLS); STFC Grants No. ST/L005794/1, No. ST/L005786/1 and No. ST/S002316/1; GOA 15/010 from KU Leuven; the FWO-Vlaanderen (Belgium) and the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 654002 (ENSAR 2). We acknowl- edge the financial aid from the Ed Schneiderman Fund at New York University. B. K. S. acknowledges financial support from Chinese Academy of Science through the PIFI fellowship under Project No. 2017VMB0023 and partly by the TDP project of Physical Research Laboratory (PRL), Ahmedabad. We would like to thank Andrew Mcfarlane for his technical assistance.

Author information

Correspondence to B. S. Cooper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Edited by Ryan Ringle, Stefan Schwarz, Alain Lapierre, Oscar Naviliat-Cuncic, Jaideep Singh and Georg Bollen

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cooper, B.S., A.Perrett, H., Ricketts, C.M. et al. A compact RFQ cooler buncher for CRIS experiments. Hyperfine Interact 240, 52 (2019). https://doi.org/10.1007/s10751-019-1586-7

Download citation

Keywords

  • Ion trap
  • Laser spectroscopy
  • 3D printing