Hyperfine Interactions

, 240:39 | Cite as

Optical clock based on a sympathetically-cooled indium ion

  • Nozomi OhtsuboEmail author
  • Ying Li
  • Kensuke Matsubara
  • Nils Nemitz
  • Hidekazu Hachisu
  • Tetsuya Ido
  • Kazuhiro Hayasaka
Part of the following topical collections:
  1. Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018


We report on the progress of an optical clock based on an indium ion (115In+) sympathetically cooled with a calcium ion (40Ca+) in a linear trap. In our previous work, we have measured the clock transition frequency with an uncertainty of 5× 10− 15, prompting an update of the Comité International des Poids et Mesures (CIPM) recommended value. The uncertainty was mainly limited by the evaluation of the Zeeman shift which was complicated by unresolved sublevel components. In contrast to the previous measurement, Zeeman sublevels are now separated by application of a magnetic field. Combined with optical pumping to specific Zeeman substates, the magnetic field application method successfully reduces the observed linewidth of the clock transition spectrum down to about 80 Hz full width at half maximum (FWHM). Frequency locking of the clock laser to the transition is demonstrated for the first time. The clock reaches a relative instability of 1.5× 10− 15 for an integration time of 4000 seconds.


Optical clock Ion trap Sympathetic cooling Indium ion 



  1. 1.
    Ludlow, A.D., Boyd, M.M., Ye, J., Peik, E., Schmidt, P.O.: Optical atomic clocks. Rev. Mod. Phys. 87(2), 637 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Dehmelt, H.G.: Monoion oscillator as potential ultimate laser frequency standard. IEEE Trans. Instrum. Meas. IM-31(2), 83 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    Safronova, M.S., Kozlov, M.G., Clark, C.W.: Precision calculation of blackbody radiation shifts for optical frequency metrology. PRL 107, 143006 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Beloy, K., Leibrant, D.R., Itano, W.M.: Hyperfine-mediated electric quadrupole shifts in al+ and in+ ion clocks. PRA 95, 043405 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Pyka, K., Herschbach, N., Keller, J., Mehlstäubler, T.E.: A high-precision segmented Paul trap with minimized micromotion for a multiple-ion clock. Appl. Phys. B 231, 114 (2014)Google Scholar
  6. 6.
    Chou, C.W., Hume, D.B., Koelemeij, J.C.J., Wineland, D.J., Rosenband, T.: Frequency comparison of two high-accuracy Al+, optical clocks. Phys. Rev. Lett. 104, 070802 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    von Zanthier, J., Becker, T.h., Eichenseer, M., Nevsky, A.Y., Schwedes, C.h., Peik, E., Walther, H., Holzwarth, R., Reichert, J., Udem, T.h., Hänsch, T.W., Pokasov, P.V., Skvortsov, M.N., Bagayev, S.N.: Absolute frequency measurement of the in+ clock transition with a mode-locked laser. Opt. Lett. 25, 1729 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Wang, Y.H., Dumke, R., Liu, T., Stejskal, A., Zhao, Y.N., Zhang, J., Lu, Z.H., Wang, L.J., Becker, T.h., Walther, H.: Absolute frequency measurement of the 115In+ 5s2 1 S 0-5s5p3 P 0 narrowline transition. Opt. Commun. 273, 526 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Hayasaka, K.: Synthesis of two-species ion chains for a new optical frequency standard with an indium ion. Appl. Phys. B 107, 965 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Becker, T.h.V., Zanthier, J., Nevsky, A.Y., Schwedes, Ch.M.N., Skvortsov, M.N., Walther, H., Peik, E.: High-resolution spectroscopy of a single In+, ion: Progress towards an optical frequency standard. Phys. Rev. A 63(R), 051802 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Ohtsubo, N., Li, Y., Matsubara, K., Ido, T., Hayasaka, K.: Frequency measurement of the clock transition of an indium ion sympathetically-cooled in a linear trap. Opt. Express 25, 11725 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Tanaka, U., Kitanaka, T., Hayasaka, K., Urabe, S.: Sideband cooling of a Ca+, – In+ ion chain toward the quantum logic spectroscopy of In+. Appl. Phys. B 121, 957 (2015)CrossRefGoogle Scholar
  13. 13.
    Hachisu, H., Nakagawa, F., Hanado, Y., Ido, T.: Months-long real-time generation of a time scale based on an optical clock. Sci. Rep. 8, 4243 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    Wakui, K., Hayasaka, K., Ido, T.: Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions. Appl. Phys. B 117, 957 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Institute of Information and Communications TechnologyKoganeiJapan

Personalised recommendations