Advertisement

Hyperfine Interactions

, 240:34 | Cite as

SIPT - An ultrasensitive mass spectrometer for rare isotopes

  • Alec HamakerEmail author
  • Georg Bollen
  • Martin Eibach
  • Christopher Izzo
  • Daniel Puentes
  • Matthew Redshaw
  • Ryan Ringle
  • Rachel Sandler
  • Stefan Schwarz
  • Isaac Yandow
Article
  • 22 Downloads
Part of the following topical collections:
  1. Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Abstract

Nuclear structure and astrophysics studies rely heavily on precision mass measurements of rare isotopes. However, many of these isotopes far from the valley of stability can only be produced at very low rates, which are incompatible with the destructive measurement techniques used by rare isotope Penning trap mass spectrometry facilities. To this end, the Low Energy Beam and Ion Trap facility at the National Superconducting Laboratory is in the process of commissioning a single ion Penning trap (SIPT) mass spectrometer that relies on the non-destructive narrowband Fourier Transform ion cyclotron resonance technique. SIPT is the first Penning trap designed to perform mass measurements of rare isotopes produced via projectile fragmentation at rates on the order of one ion per day. The system details and cryogenic detection design, as well as results from the room and cryogenic temperature commissioning, are discussed at length.

Keywords

Penning trap High precision mass measurements FT-ICR Radioactive isotope 

PACS

21.10.Dr 41.85.Ja 

Notes

Acknowledgements

This work was conducted with the support of Michigan State University and the National Science Foundation under Grants No. PHY-1102511 and No. PHY-1126282. The work leading to this publication was supported by a DAAD P.R.I.M.E. fellowship with funding from the German Federal Ministry of Education and Research and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007/2013) under REA Grant No. 605728.

References

  1. 1.
    Brown, B.A., Richter, W.A.: New USD hamiltonians for the sd shell. Phys. Rev. C 74, 034315 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Schatz, H., Ong, W.J.: Dependence of X-ray burst models on nuclear masses. Astrophys. J. 84, 2 (2017)Google Scholar
  3. 3.
    Mayer, M.G.: On closed shells in nuclei. Phys. Rev. 74, 235 (1948)ADSCrossRefGoogle Scholar
  4. 4.
    Otto, H., et al.: On the magic numbers in nuclear structure. Phys. Rev. 75, 1766 (1949)Google Scholar
  5. 5.
    Burbidge, E.M., et al.: Synthesis of the elements in stars. Rev. Mod. Phys. 29, 1 (1957)CrossRefGoogle Scholar
  6. 6.
    Wallace, R.K., Woosley, S.E.: Explosive hydrogen burning. Astrophys. J. Suppl. Ser. 45, 389 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    Ringle, R., et al.: Penning trap mass spectrometry of rare isotopes produced via projectile fragmentation at the LEBIT facility. Int. J. Mass Spectrom. 349, 87 (2013)CrossRefGoogle Scholar
  8. 8.
    Blaum, K.: High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Brown, L.S., Gabrielse, G.: Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    Valverde, A.A., et al.: First Direct Determination of the Superallowed β-decay q EC value for 14o. Phys. Rev. Lett. 114, 232502 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Valverde, A.A., et al.: High-precision mass measurement of 56cu and the redirection of the rp-process flow. Phys. Rev. Lett. 120, 032701 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    Marshall, A.G., et al.: Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Johnson, J.B.: Thermal agitation of electricity in conductors. Phys. Rev. 32, 97 (1928)ADSCrossRefGoogle Scholar
  14. 14.
    Bollen, G., et al.: The accuracy of heavy ion mass measurements using time of flight ion cyclotron resonance in a Penning trap. J. App. Phys. 68, 4355 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    Morrissey, D., et al.: Commissioning the A1900 projectile fragment separator. Nucl. Instr. and Meth. B 204, 90 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Cooper, K., et al.: Extraction of thermalized projectile fragments from a large volume gas cell. Nucl. Instr. and Meth. A 763, 543 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Barquest, B.R., et al.: RFQ Beam cooler and buncher for collinear laser spectroscopy of rare isotopes. Nucl. Instr. and Meth. A 866, 18 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Schwarz, S., et al.: The LEBIT ion cooler and buncher. Nucl. Instr. and Meth. A 816, 131 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    König, M., et al.: Quadrupole excitation of stored ion motion at the true cyclotron frequency. Int. J. Mass Spectrom. and Ion Pro. 142, 95 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    Ringle, R.: The LEBIT 9.4 T Penning trap mass spectrometer. Nucl. Instr. and Meth. A 604, 536 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Izzo, C., et al.: A laser ablation source for offline ion production at LEBIT. Nucl. Instr. and Meth. A 376, 60 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Brown, L.S., Gabrielse, G.: Precision spectroscopy of a charged particle in an imperfect Penning trap. Phys. Rev. A 4, 2423 (1982)ADSCrossRefGoogle Scholar
  23. 23.
    Gabrielse, G., et al.: Open-endcap Penning traps for high precision experiments. Int. J. Mass Spectrom. and Ion Pro. 88, 319 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    Daly, N.R.: Scintillation type mass spectrometer ion detector. Rev. Sci. Instr. 31, 264 (1960)ADSCrossRefGoogle Scholar
  25. 25.
    Ringle, R., et al.: A Lorentz steerer for injection into a Penning trap. Int. J. Mass. Spectrom. 263, 38 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alec Hamaker
    • 1
    • 2
    Email author
  • Georg Bollen
    • 1
    • 3
  • Martin Eibach
    • 2
    • 4
  • Christopher Izzo
    • 1
    • 2
    • 5
  • Daniel Puentes
    • 1
    • 2
  • Matthew Redshaw
    • 6
  • Ryan Ringle
    • 2
  • Rachel Sandler
    • 2
    • 6
  • Stefan Schwarz
    • 2
  • Isaac Yandow
    • 1
    • 2
  1. 1.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA
  2. 2.National Superconducting Cyclotron LaboratoryEast LansingUSA
  3. 3.Facility for Rare Isotope BeamsEast LansingUSA
  4. 4.Institut für PhysikErnst-Moritz-Arndt-UniversitätGreifswaldGermany
  5. 5.TRIUMFVancouverCanada
  6. 6.Central Michigan UniversityMount PleasantUSA

Personalised recommendations