Advertisement

Hyperfine Interactions

, 240:46 | Cite as

Four-body treatment of the antihydrogen-positronium system: binding, structure, resonant states and collisions

  • Piotr FroelichEmail author
  • Takuma Yamashita
  • Yasushi Kino
  • Svante Jonsell
  • Emiko Hiyama
  • Konrad Piszczatowski
Open Access
Article
  • 115 Downloads
Part of the following topical collections:
  1. Proceedings of the 13th International Conference on Low Energy Antiproton Physics (LEAP 2018) Paris, France, 12-16 March 2018

Abstract

We have developed a coupled-rearrangement-channel method allowing the rigorous non-adiabatic treatment of the multi-channel scattering problem for four particles. We present the study of the binding, resonant and collisional properties of the \(\bar {H}-Ps\) system with the total angular momentum J = 0+ (singlet positronic configuration). The binding energy, the life-times of the resonant states and the collisional cross sections are calculated and discussed. We present the preliminary cross sections for the elastic and inelastic \(\bar {H}-Ps\) scattering, notably for the excitation of Ps and for the rearrangement reaction producing the \(\bar {H}^{+}\) ions.

Keywords

Antihydrogen Positronium Collisions 

Notes

Acknowledgments

We gratefully acknowledge the financial support from the Japan Society for the Promotion of Science (JSPS) and from the Swedish Research Council. T. Y. was financially supported by Grant-in-Aid for JSPS Research Fellow Grant Number JP16J02658 and JSPS Overseas Challenge Program for Young Researchers. Y. K. was supported by JSPS KAKENHI Grant Number JP17K05592.

References

  1. 1.
    Perez, P., Rosowsky, A.: A new path toward gravity experiments with antihydrogen. Nucl. Instr. Meth. Phys. Res. A 545, 20 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Chardin, G., et al.: GBAR, Proposal to measure the Gravitational Behaviour of Antihydrogen at Rest, CERN-SPSC-P-342, 30/09/2011. Technical report (2011)Google Scholar
  3. 3.
    Indelicato, P., et al.: The GBAR project, or how does antimatter fall?. Hyp. Int. 228, 141 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Perez, P., et al.: The GBAR antimatter gravity experiment. Hyp. Int. 233, 21 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Yan, Z.-C., Ho, Y.K.: Ground state and S-wave autodissociating resonant states of positronium hydride. Phys. Rev. A 59, 2697 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Ivanov, I. A., Mitroy, J., Varga, K.: Positronium-hydrogen scattering using the stochastic variational method. Phys. Rev. A 65, 032703 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Mitroy, J.: Energy and expectation values of the PsH system. Phys. Rev. A 73, 054502 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Bubin, S., Varga, K.: Ground-state energy and relativistic corrections for positronium hydride. Phys. Rev. A 84, 012509 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Biswas, P.K.: Effect of H ion formation on positronium-hydrogen elastic scattering. J. Phys. B 34, 4831 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Blackwood, J.E., McAlinden, M.T., Walters, H.R.J.: Positronium scattering by atomic hydrogen with inclusion of target excitation channels. Phys. Rev. A 65, 032517 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Comini, P., et al.: \(\bar {\mathrm {H}}^+\) production from collisions between positronium and keV antiprotons for GBAR. Hyp. Int. 228, 159 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Woods, D., Ward, S.J., Van Reeth, P.: Detailed investigation of low-energy positronium-hydrogen scattering. Phys. Rev. A 92, 022713 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Hiyama, E., Kino, Y., Kamimura, M.: Gaussian expansion method for few-body systems. Prog. Theor. Exp. Phys. 51, 223 (2003)ADSGoogle Scholar
  14. 14.
    Hiyama, E.: Gaussian expansion method for few-body systems and its applications to atomic and nuclear physics. Progr. Theor. Exp. Phys. 01A204, 1–36 (2012)ADSGoogle Scholar
  15. 15.
    Kamimura, M.: Nonadiabatic coupled-rearrangement-channel approach to muonic molecules. Phys. Rev. A 38, 621 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    Kino, Y., Kamimura, M.: Non-adiabatic calculation of muonic atom-nucleus collisions. Hyp. Int. 82, 45 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    Taylor, J.R.: Scattering Theory. Wiley, Hoboken (1972)Google Scholar
  18. 18.
    Messiah, A.: Quantum Mechanics. North-Holland (1970)Google Scholar
  19. 19.
    Piszczatowski, K., Voronin, A., Froelich, P.: Nonadiabatic treatment of hydrogen-antihydrogen collisions. Phys. Rev. A 89, 062703 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Drachman, R.J., Houston, K.: Positronium-hydrogen elastic scattering. Phys. Rev. A 12, 885 (1975)ADSCrossRefGoogle Scholar
  21. 21.
    Zhao, J., Corless, R.M.: Compact finite difference method for integro-differential equations. App. Math. Comput. 177, 271 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Piotr Froelich
    • 1
    Email author
  • Takuma Yamashita
    • 2
  • Yasushi Kino
    • 2
  • Svante Jonsell
    • 3
  • Emiko Hiyama
    • 4
  • Konrad Piszczatowski
    • 1
  1. 1.Department of Theoretical ChemistryUppsala UniversityUppsalaSweden
  2. 2.Department of ChemistryTohoku UniversitySendaiJapan
  3. 3.Department of PhysicsStockholm UniversityStockholmSweden
  4. 4.RIKENNishina CenterWakoJapan

Personalised recommendations