Hyperfine Interactions

, 240:32 | Cite as

Interference of several gravitational quantum states of antihydrogen in GBAR experiment

  • V. V. NesvizhevskyEmail author
  • A. Yu. Voronin
  • P.-P. Crépin
  • S. Reynaud
Part of the following topical collections:
  1. Proceedings of the 13th International Conference on Low Energy Antiproton Physics (LEAP 2018) Paris, France, 12-16 March 2018


This analysis is based on a close analogy between two seemingly different experiments: on the gravitational properties of antihydrogen atoms in GBAR and on the neutron whispering gallery. They are described with high accuracy by the similar formalism. Even their parameters match each other quite well. We propose to apply the interferometric method used in the experiment on the neutron whispering gallery to the study of the free fall acceleration of antihydrogen atoms and estimate the accuracy that can be achieved. The proposed method simultaneously reduces statistical uncertainty due to observation of several gravitational quantum states, reduces systematic uncertainty due to the absence of perturbations associated with the excitation of resonant transitions, and can easily be implemented in the experiment.


Antihydrogen Gravitation Interference 



  1. 1.
    Kellerbauer, A., et al.: Proposed antimatter gravity measurement with an antihydrogen beam. Nucl. Instr. Meth. B 266, 351 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Charman, A.E., et al.: Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nature Commun. 4, 1785 (2013)CrossRefGoogle Scholar
  3. 3.
    Indelicato, P., et al.: The GBAR project, or how does antimatter fall?. Hyperf. Int. 228, 141 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Pérez, P., et al.: The GBAR antimatter gravity experiment. Hyperf. Int. 233, 21 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Voronin, A.Yu., et al.: Interaction of ultracold antihydrogen with a conducting wall. Phys. Rev. A 72, 062903 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Voronin, A.Yu., et al.: Quantum reflection of ultracold antihydrogen from a solid surface. J. Phys. B 38, L301 (2005)CrossRefGoogle Scholar
  7. 7.
    Voronin, A.Yu., et al.: Gravitational quantum states of antihydrogen. Phys. Rev. A 83, 032903 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Dufour, G., et al.: Quantum reflection of antihydrogen from nanoporous media. Phys. Rev. A 87, 22506 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Dufour, G., et al.: Quantum reflection of antihydrogen from the Casimir potential above matter slabs. Phys. Rev. A 87, 012901 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Dufour, G., et al.: Shaping the distribution of vertical velocities of antihydrogen in GBAR. Europ. Phys. J. C 74, 2731 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Voronin, A.Yu., et al.: Resonance spectroscopy of gravitational states of antihydrogen. Hyperfine Int. 228, 133 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Dufour, G., et al.: Quantum reflection and Liouville transformations from wells to walls. Europhys. Lett. 110, 30007 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Voronin, A.Yu., et al.: Quantum ballistic experiment on antihydrogen. J. Phys. B: At. Mol. Opt. Phys. 49, 054001 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Voronin, A.Yu., et al.: Quenching of antihydrogen gravitational states by surface charges. J. Phys. B: At. Mol. Opt. Phys. 49, 205003 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Crepin, P.-P., et al.: Quantum reflection of antihydrogen from a liquid helium film. Europ. Phys. Lett. 119, 33001 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Nesvizhevsky, V.V., et al.: Search for quantum states of the neutron in a gravitational field: gravitational levels. Nucl. Instr. Meth. A 440, 754 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Nesvizhevsky, V.V., et al.: Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Nesvizhevsky, V.V., et al.: Measurement of quantum states of neutrons in the Earth’s gravitational field. Phys. Rev. D 67, 102002 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Nesvizhevsky, V.V., et al.: Study of the neutron quantum states in the gravity field. Eur. Phys. J. C 40, 479 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Voronin, A., et al.: Quantum motion of a neutron in a waveguide in the gravitational field. Phys. Rev. D 73, 044029 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Adhikari, R., et al.: Quantum size effect and biased diffusion of gravitationally bound neutrons in a rough guide. Phys. Rev. A 75, 063613 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Kreuz, M., et al.: A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. Nucl. Instr. Meth A 611, 326 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Jenke, T., et al.: Realization of a gravity-resonance-spectroscopy technique. Nat. Phys. 7, 468 (2011)CrossRefGoogle Scholar
  24. 24.
    Jenke, T., et al.: Gravity resonance spectroscopy constrains dark energy and dark matter scenarios. Phys. Rev. Lett. 112, 151105 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Ichikawa, G., et al.: Observation of the spatial distribution of gravitationally bound quantum states of ultracold neutrons and its derivation using the Wigner function. Phys. Rev. Lett. 112, 0711101 (2014)CrossRefGoogle Scholar
  26. 26.
    Pignol, G., et al.: Gravitational resonance spectroscopy with an oscillating magnetic field in the GRANIT flow through arrangement. Adv. High En. Phys. 2014, 628125 (2014)Google Scholar
  27. 27.
    Baessler, S., et al.: Frequency shifts in resonance gravitational spectroscopy. Phys. Rev. D 91, 042006 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Baessler, S., et al.: Publisher’s note: Frequency shifts in resonance gravitational spectroscopy. Phys. Rev. D 91, 069906 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Nesvizhevsky, V.V., et al.: Centrifugal quantum states of neutrons. Phys. Rev. A 78, 033616 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Nesvizhevsky, V.V., et al.: Neutron whispering gallery. Nature Phys. 6, 114 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Nesvizhevsky, V.V., et al.: The whispering gallery effect in neutron scattering. New J. Phys. 12, 1367 (2010)CrossRefGoogle Scholar
  32. 32.
    Nesvizhevsky, V.V., et al.: Centrifugal quantum states of neutrons. Compt. Rend. Phys. 12, 791 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Voronin, A.Yu., et al.: Whispering-gallery states of antihydrogen near a curved surface. Phys. Rev. A 85, 014902 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Baessler, S., et al.: Constrain on the coupling of axionlike particles to matter via an ultracold neutron gravitational experiment. Phys. Rev. D 75, 075006 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    Antoniadis, I., et al.: Short-range fundamental forces. Compt. Rend. Phys. 12, 755 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Abramowitz, M., Stegun, I. A. (eds.): Handbook of Mathematical Functions, 10th edn. Dover, New York (1972)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut Max von Laue - Paul Langevin (ILL)GrenobleFrance
  2. 2.P.N. Lebedev Physical InstituteMoscowRussia
  3. 3.Laboratoire Kastler BrosselSorbonne Université, ENS-PSL Université, Collège de France, CNRSParisFrance

Personalised recommendations